Publications by authors named "RS Klein"

Central nervous system (CNS) resident memory CD8 T cells (T) that express IFN-γ contribute to neurodegenerative processes, including synapse loss, leading to memory impairment. Here, we show that CCR2 signaling in CD8 T that persist within the hippocampus after recovery from CNS infection with West Nile virus (WNV) significantly prevents the development of memory impairments. Using CCR2-deficient mice, we determined that CCR2 expression is not essential for CNS T cell recruitment or virologic control during acute WNV infection.

View Article and Find Full Text PDF

Significance: Determining the long-term cognitive impact of infections is clinically challenging. Using functional cortical connectivity, we demonstrate that interhemispheric cortical connectivity is decreased in individuals with acute Zika virus (ZIKV) encephalitis. This correlates with decreased presynaptic terminals in the somatosensory cortex.

View Article and Find Full Text PDF
Article Synopsis
  • Central nervous system (CNS) resident memory CD8 T cells that produce IFN-γ are linked to neurodegenerative issues, such as memory loss caused by synapse destruction.
  • Research reveals that CCR2 signaling in these CD8 T cells helps prevent memory impairments after recovery from West Nile virus (WNV) infection, even though CCR2 is not necessary for initial immune response or virus control.
  • Analysis shows that CCR2 modulates CD8 T cell characteristics and functions in the hippocampus during recovery, leading to reduced neuroinflammation and suggesting CCR2 as a potential target for therapies addressing cognitive deficits related to CNS infections.
View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has affected not only individual lives but also the world and global systems, both natural and human-made. Besides millions of deaths and environmental challenges, the rapid spread of the infection and its very high socioeconomic impact have affected healthcare, economic status and wealth, and mental health across the globe. To better appreciate the pandemic's influence, multidisciplinary and interdisciplinary approaches are needed.

View Article and Find Full Text PDF

Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis.

View Article and Find Full Text PDF

Up to 25% of individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exhibit postacute cognitive sequelae. Although millions of cases of coronavirus disease 2019 (COVID-19)-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1 (IL-1), a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of individuals with COVID-19.

View Article and Find Full Text PDF

Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME).

View Article and Find Full Text PDF
Article Synopsis
  • Venezuelan Equine Encephalitis virus (VEEV) can invade the central nervous system through olfactory sensory neurons (OSN) after intranasal exposure, but its impact on interferon signaling during this process hasn't been extensively studied.
  • Research using a mouse model showed that immature OSNs, which have more VEEV receptors, are initially targeted by the virus; however, the immune response (IFN signaling) is significantly delayed, providing a potential treatment opportunity.
  • Administering intranasal recombinant IFNα during or shortly after VEEV infection not only delayed the disease's onset and prolonged survival but also temporarily suppressed the virus's replication, highlighting its therapeutic potential against alphavirus-induced encephalitis
View Article and Find Full Text PDF

Up to 25% of SARS-CoV-2 patients exhibit post-acute cognitive sequelae. Although millions of cases of COVID-19-mediated memory dysfunction are accumulating worldwide, the underlying mechanisms and how vaccination lowers risk are unknown. Interleukin-1, a key component of innate immune defense against SARS-CoV-2 infection, is elevated in the hippocampi of COVID-19 patients.

View Article and Find Full Text PDF

Background: Diabetes mellitus is a chronic progressive metabolic disorder that affects millions of people worldwide. Emerging evidence suggests the important roles of sphingolipid metabolism in diabetes. In particular, sphingosine-1-phosphate (S1P) and S1P receptor 2 (S1PR2) have important metabolic functions and are involved in several metabolic diseases.

View Article and Find Full Text PDF

Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus responsible for epidemics of neurological disease across the Americas. Low-density lipoprotein receptor class A domain-containing 3 (LDLRAD3) is a recently reported entry receptor for VEEV. Here, using wild-type and Ldlrad3-deficient mice, we define a critical role for LDLRAD3 in controlling steps in VEEV infection, pathogenesis, and neurotropism.

View Article and Find Full Text PDF

Neurologic complications of Zika virus (ZIKV) infection across the lifespan have been described during outbreaks in Southeast Asia, South America, and Central America since 2016. In the adult CNS ZIKV tropism for neurons is tightly linked to its effects, with neuronal loss within the hippocampus during acute infection and protracted synapse loss during recovery, which is associated with cognitive deficits. The effects of ZIKV on cortical networks have not been evaluated.

View Article and Find Full Text PDF

Venezuelan Equine Encephalitis virus (VEEV) may enter the central nervous system (CNS) within olfactory sensory neurons (OSN) that originate in the nasal cavity after intranasal exposure. While it is known that VEEV has evolved several mechanisms to inhibit type I interferon (IFN) signaling within infected cells, whether this inhibits virologic control during neuroinvasion along OSN has not been studied. Here, we utilized an established murine model of intranasal infection with VEEV to assess the cellular targets and IFN signaling responses after VEEV exposure.

View Article and Find Full Text PDF

Histidine-rich protein II (HRPII) is secreted by  during the blood stage of malaria infection. High plasma levels of HRPII are associated with cerebral malaria, a severe and highly fatal complication of malaria. HRPII has been shown to induce vascular leakage, the hallmark of cerebral malaria, in blood-brain barrier (BBB) and animal models.

View Article and Find Full Text PDF

Purpose Of Review: Microglia, which arise from primitive myeloid precursors that enter the central nervous system (CNS) during early development, are the first responders to any perturbance of homeostasis. Although their activation has become synonymous with neurologic disease, it remains unclear whether microglial responses are the cause of or response to neuropathology. Here, we review new insights in the roles of microglia during CNS health and disease, including preclinical studies that transcriptionally profile microglia to define their functional states.

View Article and Find Full Text PDF

Opioid use alters peripheral immune functions via unknown mechanisms. In a recent issue of Cell, Zhu et al. report increased fragile-like regulatory T cells in patients with opioid use disorder and in morphine-treated mice.

View Article and Find Full Text PDF

Zhang et al. describe how meningeal MAIT cells maintain meningeal barrier integrity via the secretion of antioxidants, which also limit neuroinflammation and preserve spatial learning.

View Article and Find Full Text PDF

Many viral infections cause acute and chronic neurologic diseases which can lead to degeneration of cortical functions. While neurotropic viruses that gain access to the central nervous system (CNS) may induce brain injury directly via infection of neurons or their supporting cells, they also alter brain function via indirect neuroimmune mechanisms that may disrupt the blood-brain barrier (BBB), eliminate synapses, and generate neurotoxic astrocytes and microglia that prevent recovery of neuronal circuits. Non-neuroinvasive, neurovirulent viruses may also trigger aberrant responses in glial cells, including those that interfere with motor and sensory behaviors, encoding of memories and executive function.

View Article and Find Full Text PDF

Background: Emerging RNA viruses that target the central nervous system (CNS) lead to cognitive sequelae in survivors. Studies in humans and mice infected with West Nile virus (WNV), a re-emerging RNA virus associated with learning and memory deficits, revealed microglial-mediated synapse elimination within the hippocampus. Moreover, CNS-resident memory T (TM) cells activate microglia, limiting synapse recovery and inducing spatial learning defects in WNV-recovered mice.

View Article and Find Full Text PDF

Neuroinflammation has been recognized as a component of Alzheimer's Disease (AD) pathology since the original descriptions by Alois Alzheimer and a role for infections in AD pathogenesis has long been hypothesized. More recently, this hypothesis has gained strength as human genetics and experimental data suggest key roles for inflammatory cells in AD pathogenesis. To review this topic, Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium: "Infection and Inflammation: New Perspectives on Alzheimer's Disease (AD).

View Article and Find Full Text PDF

Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is associated with acute and postacute cognitive and neuropsychiatric symptoms including impaired memory, concentration, attention, sleep and affect. Mechanisms underlying these brain symptoms remain understudied. Here we report that SARS-CoV-2-infected hamsters exhibit a lack of viral neuroinvasion despite aberrant blood-brain barrier permeability.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has caused a historic pandemic of respiratory disease. COVID-19 also causes acute and post-acute neurological symptoms, which range from mild, such as headaches, to severe, including hemorrhages. Current evidence suggests that there is no widespread infection of the central nervous system (CNS) by SARS-CoV-2, thus what is causing COVID-19 neurological disease? Here, we review potential immunological mechanisms driving neurological disease in COVID-19 patients.

View Article and Find Full Text PDF