A molecular catalyst attached to an electrode surface can offer the advantages of both homogeneous and heterogeneous catalysis. Unfortunately, some molecular catalysts constrained to a surface lose much or all of their solution performance. In contrast, we found that when a small molecule [2Fe-2S] catalyst is incorporated into metallopolymers of the form PDMAEMA--[2Fe-2S] (PDMAEMA = poly(2-dimethylamino)ethyl methacrylate) and adsorbed to the surface, the observed rate of hydrogen production increases to > 10 s per active site with lower overpotential, increased lifetime, and tolerance to oxygen.
View Article and Find Full Text PDFOrganosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content.
View Article and Find Full Text PDFA polymerization methodology is reported using sulfur monochloride (SCl) as an alternative feedstock for polymeric materials. SCl is an inexpensive petrochemical derived from elemental sulfur (S) but has numerous advantages as a reactive monomer for polymerization vs S. This new process, termed sulfenyl chloride inverse vulcanization, exploits the high reactivity and miscibility of SCl with a broad range of allylic monomers to prepare soluble, high molar-mass linear polymers, segmented block copolymers, and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization.
View Article and Find Full Text PDFThe production of elemental sulfur from petroleum refining has created a technological opportunity to increase the valorization of elemental sulfur by the synthesis of high-performance sulfur-based plastics with improved optical, electrochemical, and mechanical properties aimed at applications in thermal imaging, energy storage, self-healable materials, and separation science. In this Perspective, we discuss efforts in the past decade that have revived this area of organosulfur and polymer chemistry to afford a new class of high-sulfur-content polymers prepared from the polymerization of liquid sulfur with unsaturated monomers, termed inverse vulcanization.
View Article and Find Full Text PDFElectrocatalytic generation of H is challenging in neutral pH water, where high catalytic currents for the hydrogen evolution reaction (HER) are particularly sensitive to the proton source and solution characteristics. A tris(hydroxymethyl)aminomethane (TRIS) solution at pH 7 with a [2Fe-2S]-metallopolymer electrocatalyst gave catalytic current densities around two orders of magnitude greater than either a more conventional sodium phosphate solution or a potassium chloride (KCl) electrolyte solution. For a planar polycrystalline Pt disk electrode, a TRIS solution at pH 7 increased the catalytic current densities for H generation by 50 mA/cm at current densities over 100 mA/cm compared to a sodium phosphate solution.
View Article and Find Full Text PDFOptical technologies in the midwave and long wave infrared spectrum (MWIR, LWIR) are important systems for high resolution thermal imaging in near, or complete darkness. While IR thermal imaging has been extensively utilized in the defense sector, application of this technology is being driven toward emerging consumer markets and transportation. In this viewpoint, we review the field of IR thermal imaging and discuss the emerging use of synthetic organic and hybrid polymers as novel IR transmissive materials for this application.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2020
Small molecule biomimetics inspired by the active site of the [FeFe]-hydrogenase enzymes have shown promising electrocatalytic activity for hydrogen (H ) generation. However, most of the active-site mimics based on [2Fe-2S] clusters are not water-soluble which limits the use of these electrocatalysts to organic media. Polymer-supported [2Fe-2S] systems, in particular, single-site metallopolymer catalysts, have shown drastic improvements for electrocatalytic H generation in aqueous milieu.
View Article and Find Full Text PDFOptical technologies in the long-wave infrared (LWIR) spectrum (7-14 μm) offer important advantages for high-resolution thermal imaging in near or complete darkness. The use of polymeric transmissive materials for IR imaging offers numerous cost and processing advantages but suffers from inferior optical properties in the LWIR spectrum. A major challenge in the design of LWIR-transparent organic materials is that nearly all organic molecules absorb in this spectral window which lies within the so-called IR-fingerprint region.
View Article and Find Full Text PDFReviewed herein is the development of novel polymer-supported [2Fe-2S] catalyst systems for electrocatalytic and photocatalytic hydrogen evolution reactions. [FeFe] hydrogenases are the best known naturally occurring metalloenzymes for hydrogen generation, and small-molecule, [2Fe-2S]-containing mimetics of the active site (H-cluster) of these metalloenzymes have been synthesized for years. These small [2Fe-2S] complexes have not yet reached the same capacity as that of enzymes for hydrogen production.
View Article and Find Full Text PDFSmall-molecule catalysts inspired by the active sites of [FeFe]-hydrogenase enzymes have long struggled to achieve fast rates of hydrogen evolution, long-term stability, water solubility, and oxygen compatibility. We profoundly improved on these deficiencies by grafting polymers from a metalloinitiator containing a [2Fe-2S] moiety to form water-soluble poly(2-dimethylamino)ethyl methacrylate metallopolymers () using atom transfer radical polymerization (ATRP). This study illustrates the critical role of the polymer composition in enhancing hydrogen evolution and aerobic stability by comparing the catalytic activity of with a nonionic water-soluble metallopolymer based on poly(oligo(ethylene glycol) methacrylate) prepared via ATRP () with the same [2Fe-2S] metalloinitiator.
View Article and Find Full Text PDFElectrocatalytic [FeFe]-hydrogenase mimics for the hydrogen evolution reaction (HER) generally suffer from low activity, high overpotential, aggregation, oxygen sensitivity, and low solubility in water. By using atom-transfer radical polymerization (ATRP), a new class of [FeFe]-metallopolymers with precise molar mass, defined composition, and low polydispersity, has been prepared. The synthetic methodology introduced here allows facile variation of polymer composition to optimize the [FeFe] solubility, activity, and long-term chemical and aerobic stability.
View Article and Find Full Text PDFWe report on the fabrication of wholly polymeric one-dimensional (1-D) photonic crystals (i.e., Bragg reflectors, Bragg mirrors) via solution processing for use in the near (NIR) and the short wave (SWIR) infrared spectrum (1-2 μm) with very high reflectance ( ∼ 90-97%).
View Article and Find Full Text PDFThe present review highlights recent developments in the chemistry of sulfur radicals. Background material essential to the understanding of these developments is briefly reviewed and references to previous in depth reviews are cited. The exciting applications of current research involving sulfur radicals in bonding theory, organic synthesis, polymer chemistry, materials science, and biochemistry are outlined.
View Article and Find Full Text PDFWe report on the preparation of ultrahigh refractive index polymers via the inverse vulcanization of elemental sulfur, selenium, and 1,3-diisopropenylbenzene for use as novel transmissive materials for mid-infrared (IR) imaging applications. Poly(sulfur--selenium--(1,3-diisopropenylbenzene)) (poly(S--Se--DIB) terpolymer materials from this process exhibit the highest refractive index of any synthetic polymer ( > 2.0) and excellent IR transparency, which can be directly tuned by terpolymer composition.
View Article and Find Full Text PDFThe synthesis of a novel high sulfur content material possessing improved thermomechanical properties is reported via the inverse vulcanization of elemental sulfur (S) and 1,3,5-triisopropenylbenzene (TIB). A key feature of this system was the ability to afford highly cross-linked, thermosetting materials, where the use of TIB as a comonomer enabled facile control of the network structure and dramatically improved the glass transition temperature (relative to our earlier sulfur copolymers) of poly(sulfur-random-(1,3,5-triisopropenylbenzene)) (poly(S--TIB)) materials over a range from = 68 to 130 °C. This approach allowed for the incorporation of a high content of sulfur-sulfur (S-S) units in the copolymer that enabled thermomechanical scission of these dynamic covalent bonds and thermal reprocessing of the material, which we confirmed via dynamic rheological characterization.
View Article and Find Full Text PDFAnalogues of the [2Fe-2S] subcluster of hydrogenase enzymes in which the central group of the three-atom chain linker between the sulfur atoms is replaced by GeR and SnR groups are studied. The six-membered FeSCECS rings in these complexes (E=Ge or Sn) adopt an unusual conformation with nearly co-planar SCECS atoms perpendicular to the Fe-Fe core. Computational modelling traces this result to the steric interaction of the Me groups with the axial carbonyls of the Fe (CO) cluster and low torsional strain for GeMe and SnMe moieties owing to the long C-Ge and C-Sn bonds.
View Article and Find Full Text PDFThe electrochemical oxidation of thioethers is shown to be facilitated by neighboring amide participation. (1)H NMR spectroscopic analysis in acetonitrile solution of two conformationally constrained compounds with such facilitation shows that two-electron participation by the amide π2 orbital can occur to stabilize the developing sulfur radical cation.
View Article and Find Full Text PDFThe practical implementation of Li-S technology has been hindered by short cycle life and poor rate capability owing to deleterious effects resulting from the varied solubilities of different Li polysulfide redox products. Here, we report the preparation and utilization of composites with a sulfur-rich matrix and molybdenum disulfide (MoS2) particulate inclusions as Li-S cathode materials with the capability to mitigate the dissolution of the Li polysulfide redox products via the MoS2 inclusions acting as "polysulfide anchors". In situ composite formation was completed via a facile, one-pot method with commercially available starting materials.
View Article and Find Full Text PDFElectronic absorption spectra and quantum chemical calculations of the radical cations of m-terphenyl tert-butyl thioethers, where the S-t-Bu bond is forced to be perpendicular to the central phenyl ring, show the occurrence of through-space [π···S···π](+) bonding interactions which lead to a stabilization of the thioether radical cations. In the corresponding methyl derivatives there is a competition between delocalization of the hole that is centered on a p-AO of the S atom into the π-system of the central phenyl ring or through space into the flanking phenyl groups, which leads to a mixture of planar and perpendicular conformations in the radical cation. Adding a second m-terphenyl tert-butyl thioether moiety does not lead to further delocalization; the spin and charge remain in one of the two halves of the radical cation.
View Article and Find Full Text PDFWe report on dynamic covalent polymers derived from elemental sulfur that can be used as thermally healable optical polymers for mid-IR thermal imaging applications. By accessing dynamic S-S bonds in these sulfur copolymers, surface scratches and defects of free-standing films of poly(sulfur--1,3-diisopropenylbenzene) (poly(S--DIB) can be thermally healed, which enables damaged lenses and windows from these materials to be reprocessed to recover their IR imaging performance. Correlation of the mechanical properties of these sulfur copolymers with different curing methods provided insights to reprocess damaged samples of these materials.
View Article and Find Full Text PDFThe synthesis of polymeric materials using elemental sulfur (S) as the chemical feedstock has recently been developed using a process termed inverse vulcanization. The preparation of chemically stable sulfur copolymers was previously prepared by the inverse vulcanization of S and 1,3-diisopropenylbenzene (DIB); however, the development of synthetic methods to introduce new chemical functionality into this novel class of polymers remains an important challenge. In this report the introduction of polythiophene segments into poly(sulfur--1,3-diisopropenylbenzene) is achieved by the inverse vulcanization of S with a styrenic functional 3,4-propylenedioxythiophene (ProDOT-Sty) and DIB, followed by electropolymerization of ProDOT side chains.
View Article and Find Full Text PDFThe synthesis of dynamic covalent polymers with controllable amounts of sulfur-sulfur (S-S) bonds in the polymer backbone via inverse vulcanization of elemental sulfur (S) and 1,3-diisopropenylbenzene (DIB) is reported. An attractive feature of the inverse vulcanization process is the ability to control the number and dynamic nature of S-S bonds in poly(sulfur--(1,3-diisopropenylbenzene)) (poly(S--DIB) copolymers by simple variation of S/DIB feed ratios in the copolymerization. S-S bonds in poly(S--DIB) copolymers of high sulfur content and sulfur rank were found to be more dynamic upon exposure to either heat, or mechanical stimuli.
View Article and Find Full Text PDFPolymers for IR imaging: The preparation of high refractive index polymers (n = 1.75 to 1.86) via the inverse vulcanization of elemental sulfur is reported.
View Article and Find Full Text PDFSulfur-rich copolymers based on poly(sulfur-1,3-diisopropenylbenzene) (poly(S--DIB)) were synthesized via inverse vulcanization to create cathode materials for lithium-sulfur battery applications. These materials exhibit enhanced capacity retention (1005 mAh/g at 100 cycles) and battery lifetimes over 500 cycles at a C/10 rate. These poly(S--DIB) copolymers represent a new class of polymeric electrode materials that exhibit one of the highest charge capacities reported, particularly after extended charge-discharge cycling in Li-S batteries.
View Article and Find Full Text PDFReductive cleavage of disulfide bonds is an important step in many biological and chemical processes. Whether cleavage occurs stepwise or concertedly with electron transfer is of interest. Also of interest is whether the disulfide bond is reduced directly by intermolecular electron transfer from an external reducing agent or mediated intramolecularly by internal electron transfer from another redox-active moiety elsewhere within the molecule.
View Article and Find Full Text PDF