Publications by authors named "ROTHMAN T"

Research shows that students can articulate a definition of caring and identify specific behaviors of caring teachers. Some of this research also indicates that White students perceive caring differently from African American students. The purpose of this study was to examine what students from different cultural backgrounds and different grade levels identify as the practices teachers use to create a caring classroom.

View Article and Find Full Text PDF

The hypothesis that BMPs (bone morphogenetic proteins), which act early in gut morphogenesis, also regulate specification and differentiation in the developing enteric nervous system (ENS) was tested. Expression of BMP-2 and BMP-4, BMPR-IA (BMP receptor subunit), BMPR-IB, and BMPR-II, and the BMP antagonists, noggin, gremlin, chordin, and follistatin was found when neurons first appear in the primordial bowel at embryonic day 12 (E12). Agonists, receptors, and antagonists were detected in separated populations of neural crest- and noncrest-derived cells.

View Article and Find Full Text PDF

This case report describes a patient who demonstrated generalized seizure activity after an injection of 30 mL of levobupivacaine 0.5% for interscalene brachial plexus block. No evidence of cardiovascular toxicity was noted.

View Article and Find Full Text PDF

Neurotrophin-3 (NT-3) promotes enteric neuronal development in vitro; nevertheless, an enteric nervous system (ENS) is present in mice lacking NT-3 or TrkC. We thus analyzed the physiological significance of NT-3 in ENS development. Subsets of neurons developing in vitro in response to NT-3 became NT-3 dependent; NT-3 withdrawal led to apoptosis, selectively in TrkC-expressing neurons.

View Article and Find Full Text PDF

Ketones are known to constitute an important fraction of fuel for consumption by the brain, with brain ketone content generally thought to be low. However, the recent observation of 1-mmol/L levels of brain beta-hydroxybutyrate (BHB) in children on the ketogenic diet suggests otherwise. The authors report the measurement of brain BHB and lactate in the occipital lobe of healthy adults using high field (4-T) magnetic resonance spectroscopy, measured in the nonfasted state and after 2- and 3-day fasting-induced ketosis.

View Article and Find Full Text PDF

Kit is a marker for interstitial cells of Cajal (ICC). ICCs interact with enteric neurons and are essential for gastrointestinal motility. The roles of neural crest-derived cells, neurons, Kit, and Kit ligand (KL) in ICC development were analyzed.

View Article and Find Full Text PDF

The terminal colon is aganglionic in mice lacking endothelin-3 or its receptor, endothelin B. To analyze the effects of endothelin-3/endothelin B on the differentiation of enteric neurons, E11-13 mouse gut was dissociated, and positive and negative immunoselection with antibodies to p75(NTR )were used to isolate neural crest- and non-crest-derived cells. mRNA encoding endothelin B was present in both the crest-and non-crest-derived cells, but that encoding preproendothelin-3 was detected only in the non-crest-derived population.

View Article and Find Full Text PDF

No enteric neurons or glia develop in the gut below the rostral foregut in mice lacking glial cell line-derived neurotrophic factor (GDNF) or Ret. We analyzed the nature and age dependence of the effects of GDNF and, for comparison, those of NT-3, on the in vitro development of the precursors of enteric neurons and glia. Positive and negative immunoselection with antibodies to p75(NTR) were used to isolate crest-derived and crest-depleted populations of cells from the fetal rat bowel at E12, 14, and 16.

View Article and Find Full Text PDF

Studies of the guinea pig small intestine have suggested that serotonin (5-HT) may be a mucosal transmitter that stimulates sensory nerves and initiates peristaltic and secretory reflexes. We tested the hypothesis that guinea pig villus epithelial cells are able to inactivate 5-HT because they express the same 5-HT transporter as serotonergic neurons. A full-length cDNA, encoding a 630-amino acid protein (89.

View Article and Find Full Text PDF

Neurotrophin-3 (NT-3) is known to promote enteric neuronal and glial development. Ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) were investigated to test the hypothesis that the development of subsets of enteric neurons and/or glia is also affected by a neuropoietic cytokine, by itself, or together with NT-3. Crest-derived cells, immunoselected from the fetal rat gut (E14) with antibodies to p75NTR, were found by RT-PCR and immunocytochemistry (after culture) to express both alpha (CNTER alpha) and beta components (gp130 and LIFR beta) of the tripartite CNTF receptor.

View Article and Find Full Text PDF

A plasmalemmal protein, LBP110, which binds to the alpha1 chain of laminin-1, is acquired by the neural crest-derived precursors of enteric neurons after they colonize the gut. We tested the hypothesis that laminin-1 interacts with LBP110 to promote enteric neuronal development. The effects of laminin-1 on neuronal development were studied in cultures of cells immunoselected from fetal mouse gut (E14-15) with antibodies to LBP110 or p75NTR, a marker for enteric crest-derived cells.

View Article and Find Full Text PDF

Extracellular matrix molecules, including laminin, affect the development of enteric neurons and accumulate in the aganglionic colon of ls/ls mice. Quantitative Northern analysis revealed that mRNAs encoding the beta 1 and gamma 1 subunits of laminin and collagens alpha 1(IV) and alpha 2(IV) are increased in the colons of ls/ls mice. Transcripts of laminin alpha 1 were evaluated quantitatively with reverse transcription and the competitive polymerase chain reaction (RT-cPCR).

View Article and Find Full Text PDF

The precursor cells that form the enteric nervous system (ENS) are multipotent when they arrive in the gut from the neural crest. Their differentiation thus depends on signals from the enteric microenvironment. Crest-derived cells were isolated from the fetal rat bowel by immunoselection at E14 with NC-1/HNK-1 antibodies and secondary antibodies coupled to magnetic beads.

View Article and Find Full Text PDF

The terminal bowel is congenitally aganglionic in ls/ls mice. The condition has been associated with an overabundance of laminin and other matrix molecules. Aggregation ls/ls<==>C3H chimeric mice and interspecies mouse<==>quail chimeras were constructed to test the hypothesis that the aganglionosis arises because the ls/ls gut and not the neural crest is abnormal.

View Article and Find Full Text PDF

The neural crest-derived cells that colonize the bowel are different from their predecessors in the premigratory crest. A procedure, which utilized the immunoselection of cells with a magnet, was thus devised to obtain crest-derived precursors from developing gut. Primary antibodies against cell surface antigens, NC-1 in chick, quail, and rat, or antibodies to a 110-kDa laminin binding protein (alpha-110) in mouse, were used in conjunction with secondary antibodies coupled to magnetic beads.

View Article and Find Full Text PDF

The enteric nervous system (ENS) in avian embryos is formed by cells that migrate to the bowel from vagal and sacral regions of the neural crest. Experiments were carried out to evaluate the developmental potential of crest-derived cells at the time they colonize the gut. Backtransplantation of E4 quail foregut (or control aneuronal hindgut) was used to determine whether crest-derived cells that have previously colonized the bowel are capable of following defined neural crest migration pathways in host embryos.

View Article and Find Full Text PDF

The ENS resembles the brain and differs both physiologically and structurally from any other region of the PNS. Recent experiments in which crest cell migration has been studied with DiI, a replication-deficient retrovirus, or antibodies that label cells of neural crest origin, have confirmed that both the avian and mammalian bowel are colonized by émigrés from the sacral as well as the vagal level of the neural crest. Components of the extracellular matrix, such as laminin, may play roles in enteric neural and glial development.

View Article and Find Full Text PDF

The hypothesis was tested that developing enteric neurons withdraw from the cell cycle in a sequence related to their phenotype. The birthdays of immunocytochemically identified myenteric and submucosal neurons were determined in the murine duodenum and jejunum. [3H]thymidine ([3H]TdR) was injected into timed pregnant mice or pups at 4-8 hour intervals over a 24 hour period.

View Article and Find Full Text PDF

Experiments were done to test the hypothesis that the avian gut is colonized by cells derived from both vagal and sacral regions of the neural crest. A fluorescent dye, diI (1,1-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), and a replication-deficient retrovirus (LZ10; Galileo et al. 1990) were employed as tracers.

View Article and Find Full Text PDF

The structure of the enteric nervous system (ENS) is different from that of extraenteric peripheral nerve. Collagen is excluded from the enteric plexuses and support for neuronal elements is provided by astrocyte-like enteric glial cells. Enteric glia differ from Schwann cells in that they do not form basal laminae and they ensheath axons, not individually, but in groups.

View Article and Find Full Text PDF

The technique of back-transplantation was used to investigate the developmental potential of neural crest-derived cells that have migrated to and colonized the avian bowel. Segments of quail bowel (removed at E4) were grafted between the somites and neural tube of younger (E2) chick host embryos. Grafts were placed at a truncal level, adjacent to somites 14-24.

View Article and Find Full Text PDF

The terminal colon of the ls/ls mouse is aganglionic because an intrinsic defect prevents its colonization by cells migrating from the neural crest. Previous studies showed that laminin, type IV collagen, and glycosaminoglycans accumulate in the region of the presumptive aganglionic ls/ls bowel through which crest-derived cells would be expected to migrate. It was suggested that crest-derived cells might fail to enter the abnormal bowel because they receive inappropriate signals from a defective extracellular matrix.

View Article and Find Full Text PDF