Coherent charge transport along ballistic paths can be introduced into graphene by Andreev reflection, for which an electron reflects from a superconducting contact as a hole, while a Cooper pair is transmitted. We use liquid-helium cooled scanning gate microscopy (SGM) to image Andreev reflection in graphene in the magnetic focusing regime, where carriers move along cyclotron orbits between contacts. Images of flow are obtained by deflecting carrier paths and displaying the resulting change in conductance.
View Article and Find Full Text PDFPortable NMR combining a permanent magnet and a complementary metal-oxide-semiconductor (CMOS) integrated circuit has recently emerged to offer the long desired online, on-demand, or in situ NMR analysis of small molecules for chemistry and biology. Here we take this cutting-edge technology to the next level by introducing parallelism to a state-of-the-art portable NMR platform to accelerate its experimental throughput, where NMR is notorious for inherently low throughput. With multiple () samples inside a single magnet, we perform simultaneous NMR analyses using a single silicon electronic chip, going beyond the traditional single-sample-per-magnet paradigm.
View Article and Find Full Text PDFAmong two-dimensional materials, semiconducting ultrathin sheets of MoS are promising for nanoelectronics. We show how a scanning probe microscope (SPM) can be used to image the flow of electrons in a MoS Hall bar sample at 4.2 K allowing us to understand device physics at the nanoscale.
View Article and Find Full Text PDFElectrons in graphene can travel for several microns without scattering at low temperatures, and their motion becomes ballistic, following classical trajectories. When a magnetic field B is applied perpendicular to the plane, electrons follow cyclotron orbits. Magnetic focusing occurs when electrons injected from one narrow contact focus onto a second contact located an integer number of cyclotron diameters away.
View Article and Find Full Text PDFReal-time detection of gastrointestinal bleeding remains a major challenge because there does not yet exist a minimally invasive technology that can both i) monitor for blood from an active hemorrhage and ii) uniquely distinguish it from blood left over from an inactive hemorrhage. Such a device would be an important tool for clinical triage. One promising solution, which we have proposed previously, is to inject a fluorescent dye into the blood stream and to use it as a distinctive marker of active bleeding by monitoring leakage into the gastrointestinal tract with a wireless fluorometer.
View Article and Find Full Text PDFA realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment.
View Article and Find Full Text PDFKelvin probe force microscopy (KPFM) is a widely used technique to measure the local contact potential difference (CPD) between an AFM probe and the sample surface via the electrostatic force. The spatial resolution of KPFM is intrinsically limited by the long range of the electrostatic interaction, which includes contributions from the macroscopic cantilever and the conical tip. Here, we present coaxial AFM probes in which the cantilever and cone are shielded by a conducting shell, confining the tip-sample electrostatic interaction to a small region near the end of the tip.
View Article and Find Full Text PDFWe show that a triaxial atomic force microscopy probe creates a noncontact trap for a single particle in a fluid via negative dielectrophoresis. A zero in the electric field profile traps the particle above the probe surface, avoiding adhesion, and the repulsive region surrounding the zero pushes other particles away, preventing clustering. Triaxial probes are promising for three-dimensional assembly and for selective imaging of a particular property of a sample using interchangeable functionalized particles.
View Article and Find Full Text PDFBackground: Early recurrent hemorrhage after endoscopic intervention for acute upper GI bleeding (UGIB) can approach 20% and leads to increased morbidity and mortality. Little has changed over the past several decades regarding immediate posthemorrhage surveillance, and there has likewise been no significant improvement in outcomes.
Objective: To develop and test an endoscopically implantable wireless biosensor for real-time detection of fluorescein-labeled blood in ex vivo and in vivo porcine models of UGIB.
We demonstrate atomic force microscope (AFM) imaging using dielectrophoresis (DEP) with coaxial probes. DEP provides force contrast allowing coaxial probes to image with enhanced spatial resolution. We model a coaxial probe as an electric dipole to provide analytic formulas for DEP between a dipole, dielectric spheres, and a dielectric substrate.
View Article and Find Full Text PDFWe study conductance fluctuations (CF) and the sensitivity of the conductance to the motion of a single scatterer in two-dimensional massless Dirac systems. Our extensive numerical study finds limits to the predicted universal value of CF. We find that CF are suppressed for ballistic systems near the Dirac point and approach the universal value at sufficiently strong disorder.
View Article and Find Full Text PDFWe use a scanning gate microscope (SGM) to characterize one-dimensional ultra-thin (diameter ≈ 30 nm) InAs/InP heterostructure nanowires containing a nominally 300 nm long InAs quantum dot defined by two InP tunnel barriers. Measurements of Coulomb blockade conductance versus backgate voltage with no tip present are difficult to decipher. Using the SGM tip as a charged movable gate, we are able to identify three quantum dots along the nanowire: the grown-in quantum dot and an additional quantum dot near each metal lead.
View Article and Find Full Text PDFWe present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip.
View Article and Find Full Text PDFThe aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2CP and details of the aggregate.
View Article and Find Full Text PDFA hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces .
View Article and Find Full Text PDFGraphene has opened new avenues of research in quantum transport, with potential applications for coherent electronics. Coherent transport depends sensitively on scattering from microscopic disorder present in graphene samples: electron waves traveling along different paths interfere, changing the total conductance. Weak localization is produced by the coherent backscattering of waves, while universal conductance fluctuations are created by summing over all paths.
View Article and Find Full Text PDFGraphene provides a fascinating testbed for new physics and exciting opportunities for future applications based on quantum phenomena. To understand the coherent flow of electrons through a graphene device, we employ a nanoscale probe that can access the relevant length scales--the tip of a liquid-He-cooled scanning probe microscope (SPM) capacitively couples to the graphene device below, creating a movable scatterer for electron waves. At sufficiently low temperatures and small size scales, the diffusive transport of electrons through graphene becomes coherent, leading to universal conductance fluctuations (UCF).
View Article and Find Full Text PDFNanotechnology
September 2009
We propose a triaxial atomic force microscope contact-free tweezer (TACT) for the controlled assembly of nanoparticles suspended in a liquid. The TACT overcomes four major challenges faced in nanoassembly, as follows. (1) The TACT can hold and position a single nanoparticle with spatial accuracy smaller than the nanoparticle size (approximately 5 nm).
View Article and Find Full Text PDFWe present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picolitre-scale drop of water, enabling very fast thermal cycling.
View Article and Find Full Text PDFWe describe the synthesis of magnetic and fluorescent silica microspheres fabricated by incorporating maghemite (gamma-Fe2O3) nanoparticles (MPs) and CdSe/CdZnS core/shell quantum dots (QDs) into a silica shell around preformed silica microspheres. The resultant approximately 500 nm microspheres have a narrow size distribution and show uniform incorporation of QDs and MPs into the shell. We have demonstrated manipulation of these microspheres using an external magnetic field with real-time fluorescence microscopy imaging.
View Article and Find Full Text PDFThe controlled growth of nanowires (NWs) with dimensions comparable to the Fermi wavelengths of the charge carriers allows fundamental investigations of quantum confinement phenomena. Here, we present studies of proximity-induced superconductivity in undoped Ge/Si core/shell NW heterostructures contacted by superconducting leads. By using a top gate electrode to modulate the carrier density in the NW, the critical supercurrent can be tuned from zero to greater than 100 nA.
View Article and Find Full Text PDFWe present an integrated circuit/microfluidic chip that traps and moves individual living biological cells and chemical droplets along programmable paths using dielectrophoresis (DEP). Our chip combines the biocompatibility of microfluidics with the programmability and complexity of integrated circuits (ICs). The chip is capable of simultaneously and independently controlling the location of thousands of dielectric objects, such as cells and chemical droplets.
View Article and Find Full Text PDFThis paper describes a model of the motion of superparamagnetic beads in a microfluidic channel under the influence of a weak magnetic field produced by an electric current passing through a coplanar metal wire. The model based on the conventional expression for the magnetic force experienced by a superparamagnetic bead (suspended in a biologically relevant medium) and the parameters provided by the manufacturer failed to match the experimental data. To fit the data to the model, it was necessary to modify the conventional expression for the force to account for the non-zero initial magnetization of the beads, and to use the initial magnetization and the magnetic susceptibility of the beads as adjustable parameters.
View Article and Find Full Text PDF