Energy-Dispersive X-Ray Spectroscopy (EDS) is a technique frequently used in Scanning and Transmission Electron Microscopes to study the elemental composition of a sample. Briefly, high energy electrons of the incident electron beam may ionize an electron from a core shell. The decay of this excited state may result in the emission of a characteristic X-ray photon or Auger-Meitner electron.
View Article and Find Full Text PDFA new, complementary technique based on Photo Emission Electron Microscopy (PEEM) is demonstrated. In contrast to PEEM, the sample is placed on a transparent substrate and is illuminated from the back side while electrons are collected from the other (front) side. In this paper, the working principle of this technique, coined back-illuminated PEEM (BIPEEM), is described.
View Article and Find Full Text PDFIn a Low Energy Electron Microscope (LEEM) the sample is illuminated with an electron beam with typical electron landing energies from 0-100 eV. The energy spread of the electron beam is determined by the characteristics of the electron source. For the two most commonly used electron sources, LaB and cold field emission W, typical energy spreads ΔE are 0.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2021
Crystalline films of pentacene molecules, two to four monolayers in thickness, are grown via in situ sublimation on silicon substrates in the ultrahigh vacuum chamber of a low-energy electron microscope. It is observed that the diffraction pattern of the pentacene layers fades upon irradiation with low-energy electrons. The damage cross section is found to increase by more than an order of magnitude for electron energies from 0 to 10 eV and by another order of magnitude from 10 to 40 eV.
View Article and Find Full Text PDFFor many complex materials systems, low-energy electron microscopy (LEEM) offers detailed insights into morphology and crystallography by naturally combining real-space and reciprocal-space information. Its unique strength, however, is that all measurements can easily be performed energy-dependently. Consequently, one should treat LEEM measurements as multi-dimensional, spectroscopic datasets rather than as images to fully harvest this potential.
View Article and Find Full Text PDFIn contrast to the in-plane transport electron mean-free path in graphene, the transverse mean-free path has received little attention and is often assumed to follow the "universal" mean-free path (MFP) curve broadly adopted in surface and interface science. Here we directly measure transverse electron scattering through graphene from 0 to 25 eV above the vacuum level both in reflection using low energy electron microscopy and in transmission using electronvolt transmission electron microscopy. From these data, we obtain quantitative MFPs for both elastic and inelastic scattering.
View Article and Find Full Text PDFMeasurement of chromatic aberration in a Low Energy Electron Microscope (LEEM) or Photo Electron Emission Microscope (PEEM) is necessary for quantitative image interpretation, and for accurate correction of chromatic aberration in an aberration-corrected instrument. While methods have been developed for measuring the spherical aberration coefficient, C, measuring the chromatic aberration coefficient, C, remains a more difficult task. Here a novel method is introduced to simplify such measurements.
View Article and Find Full Text PDFThe effects of exposure to ionizing radiation are central in many areas of science and technology, including medicine and biology. Absorption of UV and soft-x-ray photons releases photoelectrons, followed by a cascade of lower energy secondary electrons with energies down to 0 eV. While these low energy electrons give rise to most chemical and physical changes, their interactions with soft materials are not well studied or understood.
View Article and Find Full Text PDFThe effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized.
View Article and Find Full Text PDFAccurately measuring defocus in cathode lens instruments (Low Energy Electron Microscopy - LEEM, and Photo Electron Emission Microscopy - PEEM) is a pre-requisite for quantitative image analysis using Fourier Optics (FO) or Contrast Transfer Function (CTF) image simulations. In particular, one must establish a quantitative relation between lens excitation and image defocus. One way to accomplish this is the Real-Space Microspot LEED method, making use of the accurately known angles of diffracted electron beams, and the defocus-dependent shifts of their corresponding real-space images.
View Article and Find Full Text PDFCharge transport measurements form an essential tool in condensed matter physics. The usual approach is to contact a sample by two or four probes, measure the resistance and derive the resistivity, assuming homogeneity within the sample. A more thorough understanding, however, requires knowledge of local resistivity variations.
View Article and Find Full Text PDFChromatic aberration correction in light optics began with the invention of a two-color-corrected achromatic crown/flint lens doublet by Chester Moore Hall in 1730. Such color correction is necessary because any single glass shows dispersion (i.e.
View Article and Find Full Text PDFWe observe the growth of crystalline SiC nanoparticles on Si(001) at 900 °C using in situ electron microscopy. Following nucleation and growth of the SiC, there is a massive migration of Si, forming a crystalline Si mound underneath each nanoparticle that lifts it 4-5 nm above the initial growth surface. The volume of the Si mounds is roughly five to seven times the volume of the SiC nanoparticles.
View Article and Find Full Text PDFIn this paper I briefly review the use of electrostatic electron mirrors to correct the aberrations of the cathode lens objective lens in low energy electron microscope (LEEM) and photo electron emission microscope (PEEM) instruments. These catadioptric systems, combining electrostatic lens elements with a reflecting mirror, offer a compact solution, allowing simultaneous and independent correction of both spherical and chromatic aberrations. A comparison with catadioptric systems in light optics informs our understanding of the working principles behind aberration correction with electron mirrors, and may point the way to further improvements in the latter.
View Article and Find Full Text PDFWe describe the design and practical realization of a versatile sample stage with six degrees of freedom. The stage was designed for use in a Low Energy Electron Microscope, but its basic design features will be useful for numerous other applications. The degrees of freedom are X, Y, and Z, two tilts, and azimuth.
View Article and Find Full Text PDFA novel solution for high intensity electron pulse compression in both space and time is proposed in this paper. Based on the unique properties of the central-force electrostatic field of a spherical electrostatic capacitor, the newly developed α-Spherical Deflector Analyzer (α-SDA) with 2π total deflection is utilized for the practical realization of femtosecond electron pulse compression. The mirror symmetry of the system at π deflection causes not only the cancellation of the geometrical and chromatic aberrations at 2π, but also leads to aberration-free time reversal of the electron pulse in the exit plane.
View Article and Find Full Text PDF