Publications by authors named "RM Shelby"

Hardware accelerators based on two-terminal non-volatile memories (NVMs) can potentially provide competitive speed and accuracy for the training of fully connected deep neural networks (FC-DNNs), with respect to GPUs and other digital accelerators. We recently proposed [S. Ambrogio et al.

View Article and Find Full Text PDF

Neural-network training can be slow and energy intensive, owing to the need to transfer the weight data for the network between conventional digital memory chips and processor chips. Analogue non-volatile memory can accelerate the neural-network training algorithm known as backpropagation by performing parallelized multiply-accumulate operations in the analogue domain at the location of the weight data. However, the classification accuracies of such in situ training using non-volatile-memory hardware have generally been less than those of software-based training, owing to insufficient dynamic range and excessive weight-update asymmetry.

View Article and Find Full Text PDF

We show that a common Li-O battery cathode binder, poly(vinylidene fluoride) (PVDF), degrades in the presence of reduced oxygen species during Li-O discharge when adventitious impurities are present. This degradation process forms products that exhibit Raman shifts (∼1133 and 1525 cm) nearly identical to those reported to belong to lithium superoxide (LiO), complicating the identification of LiO in Li-O batteries. We show that these peaks are not observed when characterizing extracted discharged cathodes that employ poly(tetrafluoroethylene) (PTFE) as a binder, even when used to bind iridium-decorated reduced graphene oxide (Ir-rGO)-based cathodes similar to those that reportedly stabilize bulk LiO formation.

View Article and Find Full Text PDF

Quantitative differential electrochemical mass spectrometry (DEMS) is used to measure the Coulombic efficiency of discharge and charge [(e(-)/O2)dis and (e(-)/O2)chg] and chemical rechargeability (characterized by the O2 recovery efficiency, OER/ORR) for Li-O2 electrochemistry in a variety of nonaqueous electrolytes. We find that none of the electrolytes studied are truly rechargeable, with OER/ORR <90% for all. Our findings emphasize that neither the overpotential for recharge nor capacity fade during cycling are adequate to assess rechargeability.

View Article and Find Full Text PDF

Heterogeneous electrocatalysis has become a focal point in rechargeable Li-air battery research to reduce overpotentials in both the oxygen reduction (discharge) and especially oxygen evolution (charge) reactions. In this study, we show that past reports of traditional cathode electrocatalysis in nonaqueous Li-O(2) batteries were indeed true, but that gas evolution related to electrolyte solvent decomposition was the dominant process being catalyzed. In dimethoxyethane, where Li(2)O(2) formation is the dominant product of the electrochemistry, no catalytic activity (compared to pure carbon) is observed using the same (Au, Pt, MnO(2)) nanoparticles.

View Article and Find Full Text PDF

Among the many important challenges facing the development of Li-air batteries, understanding the electrolyte's role in producing the appropriate reversible electrochemistry (i.e., 2Li(+) + O2 + 2e(-) ↔ Li2O2) is critical.

View Article and Find Full Text PDF

Phase transformation generally begins with nucleation, in which a small aggregate of atoms organizes into a different structural symmetry. The thermodynamic driving forces and kinetic rates have been predicted by classical nucleation theory, but observation of nanometer-scale nuclei has not been possible, except on exposed surfaces. We used a statistical technique called fluctuation transmission electron microscopy to detect nuclei embedded in a glassy solid, and we used a laser pump-probe technique to determine the role of these nuclei in crystallization.

View Article and Find Full Text PDF

We propose and experimentally realize the recording of two-color holographic gratings in Mn:YAlO(3), a potential material for holographic data storage. This type of recording allows for nonvolatile retrieval of recorded information at the recording wavelength. We demonstrate two-color recording and readout of a 256 x 256 pixel page using red and green laser beams with a bit error rate of 6 x 10(-7).

View Article and Find Full Text PDF

Binary information in the form of a 256 x 256 pixel array has been stored holographically within a polymeric photorefractive composite of 130-mum thickness. Devices used consisted of 55-wt. % organic chromophore 1-(2?-ethylhexyloxy)-2, 5-dimethyl-4-(4?nitrophenylazo) benzene and up to 11.

View Article and Find Full Text PDF

We measure the M/# and the bit-error rate of a digital holographic storage system with a 4f optical arrangement for three configurations: recording at the Fourier plane with and without a phase mask and recording outside the Fourier plane without a phase mask. Unexpectedly, no significant change in the dynamic range was observed when a phase mask was used to record in thick crystals. However, we show that a phase mask is a key component in a 4f digital holographic storage system if high-fidelity holograms with optimum volumetric density are to be stored.

View Article and Find Full Text PDF

Digital data-page holograms consisting of 1024 x 1024 arrays of binary pixels have been stored and subsequently retrieved with an optical exposure consistent with a data rate 1 Gbit /s. Each input pixel was precisely registered with a single detector pixel, and a raw bit-error rate as low as 2.4 x 10(-6) was demonstrated with global-threshold detection.

View Article and Find Full Text PDF

Dimensional changes in polymerizable storage materials during exposure are a source of pixel misregistration in digital holographic storage. Lateral shrinkage or expansion of photopolymer recording materials can be deduced from quantitative measurement of the shift and the magnification errors of reconstructed holograms.

View Article and Find Full Text PDF

One thousand volume holographic data pages, each containing 1x10(6)pixels , are stored in a common volume of LiNbO(3) :Fe by use of the 90 degrees geometry. An effective transverse aperture of 1.6 mm x 1.

View Article and Find Full Text PDF

Chalcogenide films with reversible amorphous-crystalline phase transitions have been commercialized as optically rewritable data-storage media, and intensive effort is now focused on integrating them into electrically addressed non-volatile memory devices (phase-change random-access memory or PCRAM). Although optical data storage is accomplished by laser-induced heating of continuous films, electronic memory requires integration of discrete nanoscale phase-change material features with read/write electronics. Currently, phase-change films are most commonly deposited by sputter deposition, and patterned by conventional lithography.

View Article and Find Full Text PDF

Because of their nanometer sizes and molecular recognition capabilities, biological systems have garnered much attention as vehicles for the directed assembly of nanoscale materials.(1-6) One of the greatest challenges of this research has been to successfully interface biological systems with electronic materials, such as semiconductors and metals. As a means to address some of these issues, Sarikaya, Belcher, and others have used a combinatorial technique called phage display(7-9) to discover new families of peptides that showed binding affinities to various substrates.

View Article and Find Full Text PDF

The spin polarization of current injected into GaAs from a CoFe/MgO(100) tunnel injector is inferred from the electroluminescence polarization from GaAs/AlGaAs quantum well detectors. The polarization reaches 57% at 100 K and 47% at 290 K in a 5 T perpendicular magnetic field. Taking into account the field dependence of the luminescence polarization, the spin injection efficiency is at least 52% at 100 K, and 32% at 290 K.

View Article and Find Full Text PDF

We study the interpixel cross talk introduced to digital holographic data storage by use of a multilevel phase mask at the data-input plane. We evaluate numerically the intensity distribution at the output detector for Fourier plane hologram storage in a limited-aperture storage medium. Only the effect at an output pixel of interpixel cross talk from the four horizontal and vertical neighboring pixels is considered, permitting systematic evaluation of all possibilities.

View Article and Find Full Text PDF

We report high-contrast storage of 64-kbit digital data pages in a photorefractive polymer material. Singlepage writing, reading, and erasing operations were demonstrated with a dual-function-dopant polymeric material having a dark lifetime of several days. Data were reconstructed without error by use of several simple readout algorithms.

View Article and Find Full Text PDF

The design and the realization of an advanced precision optical test stand for evaluating materials and developing tools and techniques for holographic digital data storage are described. This apparatus allows studies of holographic recording materials and recording physics to be performed in the context of practical data storage. The system concept, its implementation, and its performance are described, and examples of holographic storage in photorefractive materials are discussed.

View Article and Find Full Text PDF