As neutron yields increase at fusion facilities, a universal symptom the community must deal with is MeV neutron-induced backgrounds in cables running to diagnostics. On the first Gain >1 plasmas in the world, the National Ignition Facility (NIF) neutron time-of-flight (nToF) diagnostic registered significant cable backgrounds that compromised key performance measurements. The South Pole nToF is uniquely located inside the NIF Target Bay shield walls, ∼18 m from the fusion source, and consequently has long coaxial cable runs (>20 m) that see significant neutron fluence.
View Article and Find Full Text PDFIndirect Drive Inertial Confinement Fusion Experiments on the National Ignition Facility (NIF) have achieved a burning plasma state with neutron yields exceeding 170 kJ, roughly 3 times the prior record and a necessary stage for igniting plasmas. The results are achieved despite multiple sources of degradations that lead to high variability in performance. Results shown here, for the first time, include an empirical correction factor for mode-2 asymmetry in the burning plasma regime in addition to previously determined corrections for radiative mix and mode-1.
View Article and Find Full Text PDFAn indirect-drive inertial fusion experiment on the National Ignition Facility was driven using 2.05 MJ of laser light at a wavelength of 351 nm and produced 3.1±0.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
We present the design of the first igniting fusion plasma in the laboratory by Lawson's criterion that produced 1.37 MJ of fusion energy, Hybrid-E experiment N210808 (August 8, 2021) [Phys. Rev.
View Article and Find Full Text PDFAn inertial fusion implosion on the National Ignition Facility, conducted on August 8, 2021 (N210808), recently produced more than a megajoule of fusion yield and passed Lawson's criterion for ignition [Phys. Rev. Lett.
View Article and Find Full Text PDFRecent progress at the National Ignition Facility (NIF), with neutron yields of order 1 × 10, places new constraints on diagnostics used to characterize implosion performance. The Magnetic Recoil neutron Spectrometer (MRS), which is routinely used to measure yield, ion temperature (T), and down-scatter ratio (dsr), has been adapted to allow measurements of dsr up to 5 × 10, and yield and T up to 2 × 10 in the near term with new data processing techniques and conversion foil solutions. This paper presents a solution for extending MRS operation up to a yield of 2 × 10 (60 MJ) by moving the spectrometer outside of the NIF shield wall.
View Article and Find Full Text PDFObtaining a burning plasma is a critical step towards self-sustaining fusion energy. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory.
View Article and Find Full Text PDFInertial confinement fusion implosions designed to have minimal fluid motion at peak compression often show significant linear flows in the laboratory, attributable per simulations to percent-level imbalances in the laser drive illumination symmetry. We present experimental results which intentionally varied the mode 1 drive imbalance by up to 4% to test hydrodynamic predictions of flows and the resultant imploded core asymmetries and performance, as measured by a combination of DT neutron spectroscopy and high-resolution x-ray core imaging. Neutron yields decrease by up to 50%, and anisotropic neutron Doppler broadening increases by 20%, in agreement with simulations.
View Article and Find Full Text PDFNuclear diagnostics provide measurements of inertial confinement fusion implosions used as metrics of performance for the shot. The interpretation of these measurements for shots with low mode asymmetries requires a way of combining the data to produce a "sky map" where the individual line-of-sight values are used to interpolate to other positions in the sky. These interpolations can provide information regarding the orientation of the low mode asymmetries.
View Article and Find Full Text PDFThe Real Time Nuclear Activation Detector (RTNAD) array at NIF measures the distribution of 14 MeV neutrons emitted by deuterium-tritium (DT) fueled inertial confinement fusion implosions. The uniformity of the neutron distribution is an important indication of implosion symmetry and DT shell integrity. The array consists of 48 LaBr(Ce) crystal gamma-ray spectrometers mounted outside the NIF target chamber, which continuously monitor the slow decay of the 909 keV gamma-ray line from activated Zr located in Zr cups surrounding each crystal.
View Article and Find Full Text PDFRecent inertial confinement fusion measurements have highlighted the importance of 3D asymmetry effects on implosion performance. One prominent example is the bulk drift velocity of the deuterium-tritium plasma undergoing fusion ("hotspot"), v. Upgrades to the National Ignition Facility neutron time-of-flight diagnostics now provide v to better than 1 part in 10 and enable cross correlations with other measurements.
View Article and Find Full Text PDFNeutron-yield diagnostics at the NIF have been upgraded to include 48 detectors placed around the NIF target chamber to assess the DT-neutron-yield isotropy for inertial confinement fusion experiments. Real-time neutron-activation detectors are used to understand yield asymmetries due to Doppler shifts in the neutron energy attributed to hotspot motion, variations in the fuel and ablator areal densities, and other physics effects. In order to isolate target physics effects, we must understand the contribution due to neutron scattering associated with the different hardware configurations used for each experiment.
View Article and Find Full Text PDFThe measurement of plasma hotspot velocity provides an important diagnostic of implosion performance for inertial confinement fusion experiments at the National Ignition Facility. The shift of the fusion product neutron mean kinetic energy as measured along multiple line-of-sight time-of-flight spectrometers provides velocity vector components from which the hotspot velocity is inferred. Multiple measurements improve the hotspot velocity inference; however, practical considerations of available space, operational overhead, and instrumentation costs limit the number of possible line-of-sight measurements.
View Article and Find Full Text PDFInertial confinement fusion implosions must achieve high in-flight shell velocity, sufficient energy coupling between the hot spot and imploding shell, and high areal density (ρR=∫ρdr) at stagnation. Asymmetries in ρR degrade the coupling of shell kinetic energy to the hot spot and reduce the confinement of that energy. We present the first evidence that nonuniformity in the ablator shell thickness (∼0.
View Article and Find Full Text PDFData from nuclear diagnostics present correlated signatures of azimuthal implosion asymmetry in recent indirect-drive inertial confinement fusion (ICF) implosion campaigns performed at the National Ignition Facility (NIF). The mean hot-spot velocity, inferred from the Doppler shift of 14 MeV neutrons produced by deuterium-tritium (DT) fusion, is systematically directed toward one azimuthal half of the NIF target chamber, centered on ϕ≈70°. Areal density (ρR) asymmetry of the converged DT fuel, inferred from nuclear activation diagnostics, presents a minimum ρR in the same direction as the hot-spot velocity and with ΔρR amplitude correlated with velocity magnitude.
View Article and Find Full Text PDFThe Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility measures the DT neutron spectrum from cryogenically layered inertial confinement fusion implosions. Yield, areal density, apparent ion temperature, and directional fluid flow are inferred from the MRS data. This paper describes recent advances in MRS measurements of the primary peak using new, thinner, reduced-area deuterated plastic (CD) conversion foils.
View Article and Find Full Text PDFAn accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T_{ion} are inferred from the variance of the primary neutron spectrum.
View Article and Find Full Text PDFThe Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4-20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ρR in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ρR's of 80-140 mg/cm(2) and CH-ablator ρR's of 400-680 mg/cm(2) are inferred from MRS data.
View Article and Find Full Text PDFA compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF).
View Article and Find Full Text PDFCR-39 solid-state nuclear track detectors are widely used in physics and in many inertial confinement fusion (ICF) experiments, and under ideal conditions these detectors have 100% detection efficiency for ∼0.5-8 MeV protons. When the fluence of incident particles becomes too high, overlap of particle tracks leads to under-counting at typical processing conditions (5 h etch in 6N NaOH at 80 °C).
View Article and Find Full Text PDFThe neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy.
View Article and Find Full Text PDFA magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques.
View Article and Find Full Text PDF