Publications by authors named "RL Donaberger"

We report the formation, structures, temperature-dependent phase transitions, and high-temperature reactivity of the potential proton and oxide ion conductors BaCe(1-x)M(x)O3 (M(3+) = In(3+), La(3+)). The present in situ diffraction studies show oxidative platinum uptake at temperatures as low as 950 °C into BaCeO3, forming the cubic Ba2CePtO6 double perovskite. The transient B-site double perovskite expels platinum at around 1200-1250 °C.

View Article and Find Full Text PDF

Exhibiting rich magnetic behaviour and potentially multiferroic properties, the dugganites, a Te(6+) containing subgroup of the langasite series, are an attractive family of compounds for future study. It was recently shown that Pb-bearing members of the dugganite series undergo distortions away from the P321 symmetry that is characteristic of the langasites. Here, we detail the consequences these distortions have on the magnetism exhibited by Pb3TeCo3V2O14 and Pb3TeCo3P2O14, solving the magnetic structures of both compounds with respect to a new supercell.

View Article and Find Full Text PDF

The local and average crystal structures and magnetic properties of the oxygen-deficient perovskite Sr(2)Fe(1.5)Cr(0.5)O(5+y) were studied using powder X-ray and neutron diffraction, neutron-pair distribution function analysis, and electron energy-loss spectroscopy.

View Article and Find Full Text PDF

Ten compounds belonging to the series of oxygen-deficient perovskite oxides Ca(2)Fe(2-x)Mn(x)O(5) and CaSrFe(2-x)Mn(x)O(5+y), where x = 1/2, 2/3, and 1 and y ≈ 0-0.5, were synthesized and investigated with respect to the ordering of oxygen vacancies on both local and long-range length scales and the effect on crystal structure and magnetic properties. For the set with y ≈ 0 the oxygen vacancies always order in the long-range sense to form the brownmillerite structure containing alternating layers of octahedrally and tetrahedrally coordinated cations.

View Article and Find Full Text PDF

Sr(2)FeMnO(5+y) was synthesized under two different conditions, in air and in argon, both of which resulted in a cubic, Pm ̅3m, structure with no long-range ordering of oxygen vacancies. The unit cell constants were found to be a(0) = 3.89328(1) Å for argon (y = 0.

View Article and Find Full Text PDF