Publications by authors named "RK Puri"

Article Synopsis
  • The study focused on a specific protein called interleukin-13 receptor alpha2 (IL-13Rα2), which is overexpressed in human solid tumors but not in normal tissues, leading to the development of a targeted anti-cancer approach using CAR-T cell technology.
  • A new chimeric antigen receptor (CAR) called 14-1 was engineered, which showed a significantly stronger binding affinity to the IL-13Rα2 than a previously developed clone and was tested on T cells for effectiveness and quality.
  • The results indicated that the 14-1 CAR-T cells were highly effective at targeting and killing the tumor cells expressing IL-13Rα2, leading to tumor regression in mice without causing harmful
View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood.

View Article and Find Full Text PDF

Background: Genetically altered recombinant poxviruses hold great therapeutic promise in animal models of cancer. Poxviruses can induce effective cellmediated immune responses against tumor-associated antigens. Preventive and therapeutic vaccination with a DNA vaccine expressing IL-13Rα2 can mediate partial regression of established tumors , indicating that host immune responses against IL-13Rα2 need further augmentation.

View Article and Find Full Text PDF

Background Chimeric antigen receptor (CAR) T cell therapy is an exciting cell-based cancer immunotherapy. Unfortunately, CAR-T cell therapy is associated with serious toxicities such as cytokine release syndrome (CRS) and neurotoxicity. The mechanism of these serious adverse events (SAEs) and how homing, distribution and retention of CAR-T cells contribute to toxicities is not fully understood.

View Article and Find Full Text PDF

Interleukin-13 receptor subunit alpha-2 (IL-13Rα2, CD213A), a high-affinity membrane receptor of the anti-inflammatory Th2 cytokine IL-13, is overexpressed in a variety of solid tumors and is correlated with poor prognosis in glioblastoma, colorectal cancer, adrenocortical carcinoma, pancreatic cancer, and breast cancer. While initially hypothesized as a decoy receptor for IL-13-mediated signaling, recent evidence demonstrates IL-13 can signal through IL-13Rα2 in human cells. In addition, expression of IL-13Rα2 and IL-13Rα2-mediated signaling has been shown to promote tumor proliferation, cell survival, tumor progression, invasion, and metastasis.

View Article and Find Full Text PDF

IL-13Rα2 is a high-affinity binding protein for its ligand IL-13 and a cancer-testis antigen as it is expressed in the testis. IL-13Rα2 is highly expressed in various cancers, including pancreatic cancer, and consists of three domains: extracellular, transmembrane, and cytoplasmic. The extracellular domain binds to the ligand to form a biologically active complex, which initiates signaling through AP-1 and other pathways.

View Article and Find Full Text PDF

Adrenocortical carcinoma (ACC) is a rare but aggressive endocrine malignancy that usually results in a fatal outcome. To allow the better clinical management and reduce mortality, we searched for clinical and molecular markers that are reliable predictor of disease severity and clinical outcome in ACC patients. We determined a correlation between the overexpression of IL-13Rα2 and the clinical outcome in ACC patients using comprehensive data available in The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

In the past three decades the field of gene therapy has made remarkable progress, surging from mere laboratory experiments to Food and Drug Administration (FDA)-approved products that bring significant reduction in disease burden to patients who previously had no therapeutic options for their serious conditions. Herein, we review the evolution of the gene therapy clinical research landscape and describe the gene therapy product development programs evaluated by the FDA in Investigational New Drug applications received in 1988-2019. We also discuss the clinical development programs of the first six oncolytic and gene therapy products approved in the United States.

View Article and Find Full Text PDF

Perineural invasion (PNI) is one of the major pathological characteristics of pancreatic ductal adeno-carcinoma (PDAC), which is mediated by invading cancer cells into nerve cells. Herein, we identify the overexpression of Interleukin-13 Receptor alpha2 (IL-13Rα2) in the PNI from 236 PDAC samples by studying its expression at the protein levels by immunohistochemistry (IHC) and the RNA level by in situ hybridization (ISH). We observe that ≥75% samples overexpressed IL-13Rα2 by IHC and ISH in grade 2 and 3 tumors, while ≥64% stage II and III tumors overexpressed IL-13Rα2 (≥2+).

View Article and Find Full Text PDF

Adaptation to environmental change, including biodiversity change, is both a new imperative in the face of global climate change and the oldest problem in human history. Humans have evolved a wide range of adaptation strategies in response to localised environmental changes, which have contributed strongly to both biological and cultural diversity. The evolving set of locally driven, 'bottom-up' responses to environmental change is collectively termed 'autonomous adaptation,' while its obverse, 'planned adaptation,' refers to 'top-down' (from without, e.

View Article and Find Full Text PDF

Pyruvate kinase M2 (PKM2) is an alternatively spliced variant, which mediates the conversion of glucose to lactate in cancer cells under normoxic conditions, known as the Warburg effect. Previously, we demonstrated that PKM2 is one of 97 genes that are overexpressed in non-small-cell lung cancer (NSCLC) cell lines. Herein, we demonstrate a novel role of subcellular PKM2 expression as a biomarker of therapeutic response after targeting this gene by shRNA or small molecule inhibitor (SMI) of PKM2 enzyme activity in vitro and in vivo.

View Article and Find Full Text PDF

Aim: We have shown that IL-4 fused to Pseudomonas exotoxin (IL-4-PE) is cytotoxic to ovarian cancer cell lines. The antineoplastic properties of IFN-α, IFN-γ and IL-4-PE have been studied and showed some promise in the clinical trials. Here, we investigated whether the combination of IL-4-PE, IFN-α and IFN-γ will result in increased ovarian cancer cell death in vitro and in vivo.

View Article and Find Full Text PDF

Background: Previously, we have demonstrated that Interleukin 13 receptor alpha 2 (IL-13Rα2) is overexpressed in approximate 78% Glioblastoma multiforme (GBM) samples. We have also demonstrated that IL-13Rα2 can serve as a target for cancer immunotherapy in several pre-clinical and clinical studies. However, the significance of overexpression of IL-13Rα2 in GBM and astrocytoma and signaling through these receptors is not known.

View Article and Find Full Text PDF

Multipotent stromal cells (MSCs) are an attractive cell source for bone and cartilage tissue repair strategies. However, the functional heterogeneity of MSCs derived from different donors and manufacturing conditions has limited clinical translation, emphasizing the need for improved methods to assess MSC chondrogenic capacity. We used functionally relevant morphological profiling to dynamically monitor emergent morphological phenotypes of chondrogenically induced MSC aggregates to identify morphological features indicative of MSC chondrogenesis.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. A variety of targeted agents are being tested in the clinic including cancer vaccines, immunotoxins, antibodies and T cell immunotherapy for GBM. We have previously reported that IL-13 receptor subunits α1 and α2 of IL-13R complex are overexpressed in GBM.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: What are the minimum methodological and conceptual requirements for an ethnopharmacological field study? How can the results of ethnopharmacological field studies be reported so that researchers with different backgrounds can draw on the results and develop new research questions and projects? And how should these field data be presented to get accepted in a scientific journal such as the Journal of Ethnopharmacology? The objective of this commentary is to create a reference that covers the basic standards necessary during planning, conducting and reporting of field research.

Materials And Methods: We focus on conducting and reporting ethnopharmacological field studies on medicinal plants or materia medica and associated knowledge of a specific people or region. The article highlights the most frequent problems and pitfalls, and draws on published literature, fieldwork experience, and extensive insights from peer-review of field studies.

View Article and Find Full Text PDF

Background: Multipotent stromal cells (MSCs) are being studied in the field of regenerative medicine for their multi-lineage differentiation and immunoregulatory capacity. MicroRNAs (miRNAs) are short non-coding RNAs that are responsible for regulating gene expression by targeting transcripts, which can impact MSC functions such as cellular proliferation, differentiation, migration and cell death. miRNAs are expressed in MSCs; however, the impact of miRNAs on cellular functions and donor variability is not well understood.

View Article and Find Full Text PDF

Background: Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV causes a bi-phasic illness in mice where primary replication in lymphoid organs is followed by entry into the central nervous system (CNS). The CNS phase of infection is marked by encephalitis and large scale neuronal death ultimately resulting in death.

View Article and Find Full Text PDF

Background: Although most Moroccans rely to some extent on traditional medicine, the practice of frigg to treat paediatric ailments by elderly women traditional healers known as ferraggat, has not yet been documented. We describe the role of these specialist healers, document the medicinal plants they use, and evaluate how and why their practice is changing.

Methods: Ethnomedicinal and ethnobotanical data were collected using semi-structured interviews and observations of medical encounters.

View Article and Find Full Text PDF

This dataset describes medicinal plants used in a poorly studied area of Morocco: the High Atlas mountains, inhabited by Ishelhin people, the southern Moroccan Amazigh (Berber) ethnic group, "An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco" (Teixidor-Toneu et al., 2016) [1]. It includes a comprehensive list of the plants used in the commune, as well as details on the plant voucher specimens collected and a glossary of Tashelhit terminology relevant to the study.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Traditional knowledge about medicinal plants from a poorly studied region, the High Atlas in Morocco, is reported here for the first time; this permits consideration of efficacy and safety of current practises whilst highlighting species previously not known to have traditional medicinal use.

Aim Of The Study: Our study aims to document local medicinal plant knowledge among Tashelhit speaking communities through ethnobotanical survey, identifying preferred species and new medicinal plant citations and illuminating the relationship between emic and etic ailment classifications.

Materials And Methods: Ethnobotanical data were collected using standard methods and with prior informed consent obtained before all interactions, data were characterized using descriptive indices and medicinal plants and healing strategies relevant to local livelihoods were identified.

View Article and Find Full Text PDF

Multipotent stromal cells (MSCs) are known for their distinctive ability to differentiate into different cell lineages, such as adipocytes, chondrocytes, and osteocytes. They can be isolated from numerous tissue sources, including bone marrow, adipose tissue, skeletal muscle, and others. Because of their differentiation potential and secretion of growth factors, MSCs are believed to have an inherent quality of regeneration and immune suppression.

View Article and Find Full Text PDF

Human bone marrow-derived multipotent mesenchymal stromal cells, often referred to as mesenchymal stem cells (MSCs), represent an attractive cell source for many regenerative medicine applications due to their potential for multi-lineage differentiation, immunomodulation, and paracrine factor secretion. A major complication for current MSC-based therapies is the lack of well-defined characterization methods that can robustly predict how they will perform in a particular in vitro or in vivo setting. Significant advances have been made with identifying molecular markers of MSC quality and potency using multivariate genomic and proteomic approaches, and more recently with advanced techniques incorporating high content imaging to assess high-dimensional single cell morphological data.

View Article and Find Full Text PDF