Publications by authors named "RJ Clark"

The α-conotoxins (α-Ctxs) are short, disulfide-rich peptides derived from the venom of the Conus marine snails, primarily acting as antagonists of nicotinic acetylcholine receptors (nAChRs). Specifically, α-Ctx Vc1.1, a 16-amino acid peptide from Conus victoriae, competitively antagonizes non-muscle nAChRs, inhibits nicotine-induced currents in bovine chromaffin cells, and alleviates neuropathic pain in rat models.

View Article and Find Full Text PDF
Article Synopsis
  • Recifin A is a newly discovered peptide characterized by a distinctive "tyrosine-lock" structure that includes a four-stranded β-sheet stabilized by disulfide bonds.
  • Researchers successfully synthesized recifin A using native chemical ligation of two fragments, finding that even in its linear form, it can adopt the complex fold easily.
  • Five analogues of recifin A were created to study the importance of the central tyrosine residue and its role in inhibiting the cancer-related enzyme tyrosyl-DNA phosphodiesterase I.
View Article and Find Full Text PDF

Cranial radiation therapy (RT) for brain cancers leads to an irreversible decline in cognitive function without an available remedy. Radiation-induced cognitive deficits (RICD) are particularly a pressing problem for the survivors of pediatric and low grade glioma (LGG) patients who often live long post-RT. Radiation-induced elevated neuroinflammation and gliosis, triggered by the detrimental CNS complement cascade, lead to excessive synaptic and cognitive loss.

View Article and Find Full Text PDF

Cyclotides are a diverse class of plant-derived cyclic, disulfide-rich peptides with a unique cyclic cystine knot topology. Their remarkable structural stability and resistance to proteolytic degradation can lead to improved pharmacokinetics and oral activity as well as selectivity and high enzymatic stability. Thus, cyclotides have emerged as powerful scaffold molecules for designing peptide-based therapeutics.

View Article and Find Full Text PDF

Acid-sensing ion channel 1a (ASIC1a) is a proton-gated channel involved in synaptic transmission, pain signalling, and several ischemia-associated pathological conditions. The spider venom-derived peptides PcTx1 and Hi1a are two of the most potent ASIC1a inhibitors known and have been instrumental in furthering our understanding of the structure, function, and biological roles of ASICs. To date, homologous spider peptides with different pharmacological profiles at ASIC1a have yet to be discovered.

View Article and Find Full Text PDF

Economically viable production of biobased products and fuels requires high-yielding, high-quality, sustainable process-advantaged crops, developed using bioengineering or advanced breeding approaches. Understanding which crop phenotypic traits have the largest impact on biofuel economics and sustainability outcomes is important for the targeted feedstock crop development. Here, we evaluated biomass yield and cell-wall composition traits across a large natural variant population of switchgrass (.

View Article and Find Full Text PDF

The complement factor C5a is a core effector product of complement activation. C5a, acting through its receptors C5aR1 and C5aR2, exerts pleiotropic immunomodulatory functions in myeloid cells, which is vital for host defense against pathogens. Pattern-recognition receptors (PRRs) are similarly expressed by immune cells as detectors of pathogen-associated molecular patterns.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are drug targets for neurological diseases and disorders, but selective targeting of the large number of nAChR subtypes is challenging. Marine cone snail α-conotoxins are potent blockers of nAChRs and some have been engineered to achieve subtype selectivity. This engineering effort would benefit from rapid computational methods able to predict mutational energies, but current approaches typically require high-resolution experimental structures, which are not widely available for α-conotoxin complexes.

View Article and Find Full Text PDF

We evaluated a noncontingent reinforcement treatment that included initial brief exposures to signaled alternation of availability and nonavailability of reinforcement, followed by rapid schedule thinning. Results confirmed findings from previous research (typically with differential reinforcement schedules) that establishing stimulus control across multiple treatment components facilitated schedule thinning. We discuss both the clinical utility of this procedure and the utility of stimulus control for making interventions more practical for clinicians.

View Article and Find Full Text PDF

TLQP-21 is a 21-amino acid neuropeptide derived from the VGF precursor protein. TLQP-21 is expressed in the nervous system and neuroendocrine glands, and demonstrates pleiotropic roles including regulating metabolism, nociception and microglial functions. Several possible receptors for TLQP-21 have been identified, with complement C3a receptor (C3aR) being the most commonly reported.

View Article and Find Full Text PDF

Significant differences in the photochemical and photophysical behavior of -α-methylstilbene and -stilbene have been attributed to structural changes caused by the steric requirements of the methyl group. We present here the X-ray structures of - and -α-methylstilbene (- and -MeSt). This is the first X-ray structure of a -stilbene.

View Article and Find Full Text PDF

The protein HFE (homeostatic iron regulator) is a key regulator of iron metabolism, and mutations in HFE underlie the most frequent form of hereditary haemochromatosis (HH-type I). Studies have shown that HFE interacts with transferrin receptor 1 (TFR1), a homodimeric type II transmembrane glycoprotein that is responsible for the cellular uptake of iron via iron-loaded transferrin (holo-transferrin) binding. It has been hypothesised that the HFE/TFR1 interaction serves as a sensor to the level of iron-loaded transferrin in circulation by means of a competition mechanism between HFE and iron-loaded transferrin association with TFR1.

View Article and Find Full Text PDF

Objectives: To determine whether SARS-CoV-2 can trigger complement activation, the pathways that are involved and the functional significance of the resultant effect.

Methods: SARS-CoV-2 was inoculated into a human lepirudin-anticoagulated whole blood model, which contains a full repertoire of complement factors and leukocytes that express complement receptors. Complement activation was determined by measuring C5a production with an ELISA, and pretreatment with specific inhibitors was used to identify the pathways involved.

View Article and Find Full Text PDF

Background And Purpose: Over past decades, targeted therapies and immunotherapy have improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF-melanoma.

View Article and Find Full Text PDF

The complement C5a receptor 1 (C5aR1) has been studied as a potential therapeutic target for autoimmune and inflammatory diseases, with several drug candidates identified. Understanding the pharmacokinetics and pharmacodynamics of a drug candidate is a crucial preclinical step that allows for a greater understanding of a compound's in vivo biodistribution and target engagement to assist in clinical dose selection and dosing frequency. However, few in vivo pharmacodynamic methods have been described for C5a inhibitors.

View Article and Find Full Text PDF

Cholesta-5,7,9(11)-trien-3β-ol (9,11-dehydroprovitamin D, CTL) is used as a fluorescent probe to track the presence and migration of cholesterol in vivo. CTL is known to be photochemically active, but little consideration has been given to the formation efficiency and possible toxicity of its photoproducts. In degassed tetrahydrofuran (THF) solution, we isolated the photoproduct of CTL and of its 25-hydroxy derivative (HOCTL), and X-ray crystal structures were obtained for HOCTL and the photorearrangement product.

View Article and Find Full Text PDF

Head-to-tail cyclic and disulfide-rich peptides are natural products with applications in drug design. Among these are the PawS-Derived Peptides (PDPs) produced in seeds of the daisy plant family. PDP-23 is a unique member of this class in that it is twice the typical size and adopts two β-hairpins separated by a hinge region.

View Article and Find Full Text PDF

We hypothesized that environmental microbiomes contain a wide range of bacteria that produce yet uncharacterized antimicrobial compounds (AMCs) that can potentially be used to control pathogens. Over 600 bacterial strains were isolated from soil and food compost samples, and 68 biocontrol bacteria with antimicrobial activity were chosen for further studies based on inhibition assays against a wide range of food and plant pathogens. For further characterization of the bioactive compounds, a new method was established that used living pathogens in a liquid culture to stimulate bacteria to produce high amounts of AMCs in bacterial supernatants.

View Article and Find Full Text PDF

While serum-circulating complement destroys invading pathogens, intracellularly active complement, termed the “complosome,” functions as a vital orchestrator of cell-metabolic events underlying T cell effector responses. Whether intracellular complement is also nonredundant for the activity of myeloid immune cells is currently unknown. Here, we show that monocytes and macrophages constitutively express complement component (C) 5 and generate autocrine C5a via formation of an intracellular C5 convertase.

View Article and Find Full Text PDF
Article Synopsis
  • C5a is a critical mediator of inflammation and activates receptors C5aR1 and C5aR2, often studied for immune disorders.
  • Chemical synthesis of C5a provides advantages over traditional methods like recombinant expression, allowing for modifications and reduced contamination risks.
  • The study presents a method for efficiently synthesizing human and mouse C5a, demonstrating its functional similarity to natural C5a and its potential as a valuable tool for research and therapeutic applications.
View Article and Find Full Text PDF

The anaphylatoxin C5a is core effector of complement activation. C5a exerts potent proinflammatory and immunomodulatory actions through interacting with its C5a receptors, C5aR1 and C5aR2, modulating multiple signaling and functional activities of immune cells. Native C5a contains a large -linked glycosylation site at Asn, which accounts for up to 25% of its m.

View Article and Find Full Text PDF

The anaphylatoxin C5a is a complement peptide associated with immune-related disorders. C5a binds with equal potency to two GPCRs, C5aR1 and C5aR2. Multiple C5a peptide agonists have been developed to interrogate the C5a receptor function but none show selectivity for C5aR1.

View Article and Find Full Text PDF

Interactions between organic molecules and inorganic materials are ubiquitous in many applications and often play significant roles in directing pathways of crystallization. It is frequently debated whether kinetics or thermodynamics plays a more prominent role in the ability of molecular modifiers to impact crystal nucleation and growth processes. In the case of nanoporous zeolites, approaches in rational design often capitalize on the ability of organics, used as either modifiers or structure-directing agents, to markedly impact the physicochemical properties of zeolites.

View Article and Find Full Text PDF