Recombinant adeno-associated virus (AAV) is one of the main viral vector-based gene therapy platforms. AAV is a virus consisting of a ≈25 nm diameter capsid with a ≈4.7 kb cargo capacity.
View Article and Find Full Text PDFA novel salt-tolerant cation-exchange membrane, prepared with a multimodal ligand, 2-mercaptopyridine-3-carboxylic acid (MMC-MPCA), was examined for its purification properties in a bind-and-elute mode from the high conductivity supernatant of a Pichia pastoris fermentation producing and secreting a single-chain variable fragment (scFv). If successful, this approach would eliminate the need for a buffer exchange prior to product capture by ion-exchange. Two fed-batch fermentations of Pichia pastoris resulted in fermentation supernatants reaching an scFv titer of 395.
View Article and Find Full Text PDFNonwoven membranes are highly engineered fibrous materials that can be manufactured on a large scale from a wide range of different polymers, and their surfaces can be modified using a large variety of different chemistries and ligands. The fiber diameters, surface areas, pore sizes, total porosities, and thicknesses of the nonwoven mats can be carefully controlled, providing many opportunities for creative approaches for the development of novel membranes with unique properties to meet the needs of the future of downstream processing. Fibrous membranes are already finding use in ultrafiltration, microfiltration, depth filtration, and, more recently, in membrane chromatography for product capture and impurity removal.
View Article and Find Full Text PDFEngineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the C1-3 and C chains.
View Article and Find Full Text PDFButyrylcholinesterase (BChE) is recognized as a high value biotherapeutic in the treatment of Alzheimer's disease and drug addiction. This study presents the rational design and screening of an in-silico library of trimeric peptides against BChE and the experimental characterization of peptide ligands for purification. The selected peptides consistently afforded high BChE recovery (> 90 %) and purity, yielding up to a 1000-fold purification factor.
View Article and Find Full Text PDFThe success of adeno-associated virus (AAV)-based therapeutics in gene therapy poses the need for rapid and efficient processes that can support the growing clinical demand. Nonwoven membranes represent an ideal tool for the future of virus purification: owing to their small fiber diameters and high porosity, they can operate at high flowrates while allowing full access to target viral particles without diffusional limitations. This study describes the development of nonwoven ion-exchange membrane adsorbents for the purification of AAV2 from an Sf9 cell lysate.
View Article and Find Full Text PDFThe Manufacturing Readiness Levels (MRLs) developed by the Department of Defense are well-established tools for describing the maturity of new technologies resulting from government-sponsored Research and Development programs, from the concept phase to commercial deployment. While MRLs are generally applicable to a wide range of industries and technologies, there is significant value in offering an industry-specific view on how the basic principles may be applied to biomanufacturing. This paper describes Biomanufacturing Readiness Levels (BRLs) developed by the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), a public/private partnership that is part of the Manufacturing USA network.
View Article and Find Full Text PDFBiotechnol Bioeng
July 2022
The growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography.
View Article and Find Full Text PDFThere is strong need to reduce the manufacturing costs and increase the downstream purification efficiency of high-value therapeutic monoclonal antibodies (mAbs). This paper explores the performance of a weak cation-exchange membrane based on the coupling of IDA to poly(butylene terephthalate) (PBT) nonwoven fabrics. Uniform and conformal layers of poly(glycidyl methacrylate) (GMA) were first grafted to the surface of the nonwovens.
View Article and Find Full Text PDFThis study presents the preparation and characterization of UV-grafted polybutylene terepthalate (PBT) ion exchange nonwoven membranes for chromatographic purification of biomolecules. The PBT nonwoven was functionalized with sulfonate and secondary amine for cation and anion exchange (CEX and AEX), respectively. The anion exchange membrane showed an equilibrium static binding capacity of 1300 mg BSA/g of membrane, while the cationic membranes achieved a maximum equilibrium binding capacity of over 700 mg hIgG/g of membrane.
View Article and Find Full Text PDFCapture of host cell proteins (HCPs) from cell culture production harvests is critical to ensure the maximum levels specified by international regulatory bodies of product purity for therapeutic monoclonal antibodies (mAbs). Peptide ligands that selectively target the whole spectrum of the HCPs, while letting the mAb product flow through unbound, are an ideal complement to the affinity-based capture step via Protein A chromatography. In this work, we describe the development of HCP-binding peptide ligands, especially focusing on the steps of (1) peptide selection via library screening and (2) quantification of HCP removal via proteomics by mass spectrometry.
View Article and Find Full Text PDFThe quest for ligands alternative to Protein A for the purification of monoclonal antibodies (mAbs) has been pursued for almost three decades. Yet, the IgG-binding peptides known to date still fall short of the host cell protein (HCP) logarithmic removal value (LRV) set by Protein A media (2.5-3.
View Article and Find Full Text PDFThe purpose of this work was to compare side by side the performance of packed bed and membrane chromatography adsorption processes for protein purification. The comparison was performed using anion exchange media with the same ligand immobilized on the adsorbing surface, namely the strong Q quaternary ammonium group, R-CH-N-(CH), and bovine serum albumin (BSA) as a model protein. In addition, the stationary phase volume was held constant for each geometry (3 mL) and runs were executed using the same mobile phase superficial velocity.
View Article and Find Full Text PDFScreening solid-phase combinatorial libraries of bioactive compounds against fluorescently labeled target biomolecules is an established technology in ligand and drug discovery. Rarely, however, do screening methods include comprehensive strategies-beyond mere library blocking and competitive screening-to ensure binding selectivity of selected leads. This work presents a method for multiplexed solid-phase peptide library screening using a ClonePix 2 Colony Picker that integrates (i) orthogonal fluorescent labeling for positive selection against a target protein and negative selection against competitor species with (ii) semi-quantitative tracking of target vs.
View Article and Find Full Text PDFThe growing integration of quality-by-design (QbD) concepts in biomanufacturing calls for a detailed and quantitative knowledge of the profile of impurities and their impact on the product safety and efficacy. Particularly valuable is the determination of the residual level of host cell proteins (HCPs) secreted, together with the product of interest, by the recombinant cells utilized for production. Though often referred to as a single impurity, HCPs comprise a variety of species with diverse abundance, size, function, and composition.
View Article and Find Full Text PDFTris(2-aminoethyl)-amine (TREN), a branched amine, was coupled to planar surfaces of alkanethiol self-assembled monolayers (SAMs) to increase the grafting density of IgG-binding peptide (HWRGWV or HWRGWVG) on gold surfaces. One of the three primary amine pendant groups of TREN anchors onto the SAM, while the other two are available for grafting with the C-termini of the peptide. The ellipsometric peptide density on the SAM-branched amine was 1.
View Article and Find Full Text PDFThis work presents the use of peptide ligand HWRGWV and its cognate sequences to develop affinity adsorbents that compete with Protein A in terms of binding capacity and quality of the eluted product. First, the peptide ligand was conjugated to crosslinked agarose resins (WorkBeads) at different densities and using different spacer arms. The optimization of ligand density and display resulted in values of static and dynamic binding capacity of 85 mg/mL and 65 mg/mL, respectively.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2018
Prior work described the identification and characterization of erythropoietin-binding cyclic peptides SLFFLH, VVFFVH, FSLLHH and FSLLSH (all of the form cyclo[(N-Ac)Dap(A)-X-X-AE], wherein X-X is the listed sequences). In this work, the peptide ligands were synthesized on Toyopearl chromatographic resins and utilized for purifying recombinant human erythropoietin (rHuEPO) from complex sources. Elution buffer pH and composition were optimized to maximize the recovery of standard rHuEPO from the peptide resins.
View Article and Find Full Text PDFThis work presents the selection and characterization of erythropoietin (EPO)-binding cyclic peptide ligands. The sequences were selected by screening a focused library of cyclic depsipeptides cyclo[(N-Ac)Dap(A)-X-X-AE], whose structure and amino acid compositions were tailored to mimic the EPO receptor. The sequences identified through library screening were synthesized on chromatographic resin and characterized via binding-and-elution studies against EPO to select a pool of candidate ligands.
View Article and Find Full Text PDFA strategy is presented for developing variants of peptide ligands with enhanced biochemical stability for the purification of antibodies from animal sera. Antibody-binding sequences HWRGWV, HYFKFD, and HFRRHL, previously discovered by our group, were modified with non-natural amino acids to gain resistance to proteolysis, while maintaining target affinity and selectivity. As trypsin and α-chymotrypsin were chosen as models of natural proteolytic enzymes, the basic (arginine and lysine) and aromatic (tryptophan, phenylalanine, and tyrosine) amino acids were replaced with non-natural analogs.
View Article and Find Full Text PDFThe interaction affinity between human IgG and a short peptide ligand (hexameric HWRGWV) was investigated by following the shifts in frequency and energy dissipation in a quartz crystal microbalance (QCM). HWRGWV was immobilized by means of poly(ethylene glycol) tethered on QCM sensors coated with silicon oxide, which enhanced the accessibility of the peptide to hIgG and also passivated the surface. Ellipsometry and ToF-SIMS were employed for surface characterization.
View Article and Find Full Text PDFThe critical need for enhancing influenza pandemic preparedness in many developing nations has led the World Health Organization (WHO) and the Biomedical Advanced Research and Development Authority (BARDA), part of the U.S. Department of Health and Human Services (HHS), to develop an international influenza vaccine capacity-building program.
View Article and Find Full Text PDFThis paper characterizes the potential of novel hexameric peptide ligands for on-line IgG detection in bioprocesses. Surface Plasmon Resonance (SPR) was used to study the binding of human IgG to the hexameric peptide ligand HWRGWV, which was covalently grafted to alkanethiol self-assembled monolayers (SAM) on gold surfaces. Peptide coupling on SAMs was verified, followed by covalent grafting of peptides with a removable Fmoc or acetylated N-termini via their C-termini to produce active peptide SPR sensors that were tested for IgG binding.
View Article and Find Full Text PDFBioactive films were produced by conjugation of a short peptide onto modified cellulose nanofibrils (CNF). Specifically, a hydrophilic copolymer, poly(2-aminoethyl methacrylate hydrochloride-co-2-hydroxyethylmethacrylate) (poly(AMA-co-HEMA)), was grafted via surface initiated polymerization from an initiator coupled to CNF. The poly(AMA-co-HEMA) was used as a spacer and support layer for immobilization of the peptide, acetylated-HWRGWVA, which has specific affinity with human immunoglobulin G (hIgG).
View Article and Find Full Text PDF