Background: The historical view of scoliosis as a primary rotation deformity led to debate about the pathomechanic role of paravertebral muscles; particularly multifidus, thought by some to be scoliogenic, counteracting, uncertain, or unimportant. Here, we address lateral lumbar curves (LLC) and suggest a pathomechanic role for quadrates lumborum, (QL) in the light of a new finding, namely of 12th rib bilateral length asymmetry associated with idiopathic and small non-scoliosis LLC.
Methods: Group 1: The postero-anterior spinal radiographs of 14 children (girls 9, boys 5) aged 9-18, median age 13 years, with right lumbar idiopathic scoliosis (IS) and right LLC less that 10°, were studied.
This paper formulates a novel multifactorial Cascade Concept for the pathogenesis of adolescent idiopathic scoliosis (AIS). This Concept stems from the longitudinal findings of Clark et al. (J Bone Miner Res 29(8):1729-36, 2014) who identified leptin body composition factors at 10 years of age associated with a scoliosis deformity found at 15 years.
View Article and Find Full Text PDFTo our knowledge there are no publications that have evaluated physical activities in relation to the etiopathogenesis of adolescent idiopathic scoliosis (AIS) other than sports scolioses. In a preliminary longitudinal case-control study, mother and child were questioned and the children examined by one observer. The aim of the study was to examine possible risk factors for AIS.
View Article and Find Full Text PDFAdolescent idiopathic scoliosis (AIS) is the most common form of structural spinal deformities that have a radiological lateral Cobb angle - a measure of spinal curvature - of ≥10(°). AIS affects between 1% and 4% of adolescents in the early stages of puberty and is more common in young women than in young men. The condition occurs in otherwise healthy individuals and currently has no recognizable cause.
View Article and Find Full Text PDFThis paper aims to integrate into current understanding of AIS causation, etiopathogenetic information presented at two Meetings during 2012 namely, the International Research Society of Spinal Deformities (IRSSD) and the Scoliosis Research Society (SRS). The ultimate hope is to prevent the occurrence or progression of the spinal deformity of AIS with non-invasive treatment, possibly medical. This might be attained by personalised polymechanistic preventive therapy targeting the appropriate etiology and/or etiopathogenetic pathways, to avoid fusion and maintain spinal mobility.
View Article and Find Full Text PDFIntroduction: In girls with adolescent idiopathic scoliosis (AIS) the finding of abnormal extra-spinal bilateral skeletal length asymmetries in upper limbs, periapical ribs, and ilia begs the question whether these bilateral asymmetries are connected in some way with pathogenesis.
Material And Methods: We investigated upper arm length (UAL) asymmetries in two groups of right-handed girls aged 11-18 years with right thoracic adolescent idiopathic scoliosis (RT-AIS, n=95) from preoperative and screening referrals (mean Cobb angle 46°) and healthy controls (n=240). Right and left UAL were measured with a Harpenden anthropometer of the Holtain equipment, Asymmetry was calculated as UAL difference, right minus left, in mm.
Introduction: Trunkal back asymmetry is considered very important for the selection of children at risk of developing scoliosis. Traditionally, this asymmetry as thoracic or lumbar hump is the main indicator for referral of subjects with idiopathic scoliosis (IS) to clinics from school-screening programs. This asymmetry is also used as the most important sign for further assessment at scoliosis clinics.
View Article and Find Full Text PDFStud Health Technol Inform
September 2012
Although considerable progress had been made in the past two decades in understanding the etiopathogenesis of adolescent idiopathic scoliosis (AIS), it still lacks an agreed theory of etiopathogenesis. One problem may be that AIS results not from one cause, but several that interact with various genetic predisposing factors. There is a view there are two other pathogenic processes for idiopathic scoliosis namely, initiating (or inducing), and those that cause curve progression.
View Article and Find Full Text PDFGenetic factors are believed to play an important role in the etiology of adolescent idiopathic scoliosis (AIS). Discordant findings for monozygotic (MZ) twins with AIS show that environmental factors including different intrauterine environments are important in etiology, but what these environmental factors may be is unknown. Recent evidence for common chronic non-communicable diseases suggests epigenetic differences may underlie MZ twin discordance, and be the link between environmental factors and phenotypic differences.
View Article and Find Full Text PDFAdolescent idiopathic scoliosis (AIS) is a 3-D spinal deformity with uncertain etiology; abnormalities in brain development represent one of the possible explanatory concepts for its pathogenesis. The objective of this study is to investigate the brain maturation by thickness of cerebral cortex among female adolescents with and without idiopathic scoliosis. Fifty AIS patients with a typical right-thoracic curve pattern were compared with 40 age-matched healthy controls.
View Article and Find Full Text PDFBackground: Despite considerable advances in the past few decades, there is no generally accepted "top theory or theories" of the etiology of adolescent idiopathic scoliosis (AIS). This article aims to provide an overview of the current main hypothetical "concepts" on the etiopathogenesis of AIS.
Methods: An extensive literature review on hypothetical concepts on the etiology and etiopathogenesis of AIS.
Anthropometric data from three groups of adolescent girls - preoperative adolescent idiopathic scoliosis (AIS), screened for scoliosis and normals were analysed by comparing skeletal data between higher and lower body mass index subsets. Unexpected findings for each of skeletal maturation, asymmetries and overgrowth are not explained by prevailing theories of AIS pathogenesis. A speculative pathogenetic theory for girls is formulated after surveying evidence including: (1) the thoracospinal concept for right thoracic AIS in girls; (2) the new neuroskeletal biology relating the sympathetic nervous system to bone formation/resorption and bone growth; (3) white adipose tissue storing triglycerides and the adiposity hormone leptin which functions as satiety hormone and sentinel of energy balance to the hypothalamus for long-term adiposity; and (4) central leptin resistance in obesity and possibly in healthy females.
View Article and Find Full Text PDFScoliosis
June 2009
Background: In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA), is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS) showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications (double neuro-osseous theory).
Methods: 5953 adolescents age 11-17 years (boys 2939, girls 3014) were examined in a school screening program in two standard positions, standing forward bending (FB) and sitting FB.
AJNR Am J Neuroradiol
August 2009
Background And Purpose: Adolescent idiopathic scoliosis (AIS) is a spinal deformity with unknown cause. Previous studies have suggested that subclinical neurologic abnormalities are associated with AIS. The objective of this prospective study was to characterize systematically neuroanatomic changes in patients with left thoracic AIS vs right thoracic AIS and healthy control subjects by using volume-based morphometry.
View Article and Find Full Text PDFThe deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle.
View Article and Find Full Text PDFTorsion and counter-torsion in the spine are features of the three-dimensional deformity of adolescent idiopathic scoliosis, Vertebral axial rotation has recently been found in the normal adult thoracic spine. Torsion in the lower limbs, femora and tibiae is a feature of normal human skeletal postnatal development. In recent years, femoral anteversion (FAV) and tibial torsion (TT) have been studied in normal children by imaging techniques, especially ultrasound.
View Article and Find Full Text PDFThere is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis.
View Article and Find Full Text PDFThe autonomic nervous system through its hypothalamic neuroendocrine control of puberty, skeletal growth and menarche contributes importantly to the pathogenesis of adolescent idiopathic scoliosis (AIS). Melatonin dysfunction detected in AIS subjects also involves the autonomic nervous system. The thoracospinal concept for the pathogenesis of right thoracic AIS in girls thought by some to result from dysfunction of the sympathetic nervous system (SNS), is supported by recent vascular and peripheral nerve studies.
View Article and Find Full Text PDFThere is increasing support for the view that the unique human bipedalism and the erect posture are prerequisites for the pathogenesis of adolescent idiopathic scoliosis (AIS). How human bipedalism may contribute to the pathogenesis of AIS is not clear. In normal humans, axial rotations and counter-rotations of the trunk are carried out frequently and forcibly in activities that are not performed by quadrupeds.
View Article and Find Full Text PDFIn the scoliotic spine, torsion is generally evaluated in relation to axial rotation of the apical vertebra. In the lower limbs, the changes in torsion by age of femoral anteversion (FAV) relative to tibial torsion (TT) have been studied in dried bones, normal growing subjects and adults and subjects with osteoarthritis of the hip or the knee. This paper reports the application of real-time ultrasound to FAV and TT in normal children age 11-18 years and in scoliosis screening referrals with particular reference to how FAV relates to TT as 1) ratios, and 2) tibio-femoral index (TFI) of torsion, calculated as TT minus femoral FAV.
View Article and Find Full Text PDFLower body mass index (BMI) and lower circulating leptin levels have been reported in girls with AIS. In this paper we evaluate skeletal sizes and asymmetries by higher and lower BMI subsets about the means for each of three groups of girls age 11-18 years: 1) normals, 2) school screening referrals, and 3) preoperative girls. Higher and lower BMI subsets, likely to have separated subjects with higher from those with lower circulating leptin levels, identify: 1) girls with relatively earlier and later menarche; 2) trunk width size greater in the higher than in the lower BMI subset, of all three groups; 3) abnormal upper arm length (UAL) asymmetries (right minus left) in the lower BMI subset of the preoperative girls; and 4) in thoracic AIS of screened and preoperative girls, Cobb angle and apical vertebral rotation each significantly and positively correlate with UAL asymmetry in the lower BMI subset but not in the higher BMI subset.
View Article and Find Full Text PDF