In this work, we explain the origin and the mechanism responsible for the strong enhancement of the Raman signal of sulfur chains encapsulated by single-wall carbon nanotubes by running resonance Raman measurements in a wide range of excitation energies for two nanotube samples with different diameter distributions. The Raman signal associated with the vibrational modes of the sulfur chain is observed when it is confined by small-diameter metallic nanotubes. Moreover, a strong enhancement of the Raman signal is observed for excitation energies corresponding to the formation of excited nanotube-chain-hybrid electronic states.
View Article and Find Full Text PDFWe used single-walled carbon nanotubes chemically functionalized with polyethylene glycol (SWCNT-PEG) to assess the effects of this nanomaterial on astrocytic endocytosis and exocytosis. We observed that the SWCNT-PEG do not affect the adenosine triphosphate (ATP)-evoked Ca elevations in astrocytes but significantly reduce the Ca-dependent glutamate release. There was a significant decrease in the endocytic load of the recycling dye during constitutive and ATP-evoked recycling.
View Article and Find Full Text PDFThe unique properties of single-walled carbon nanotubes (SWCNTs) have made them interesting candidates for applications in biomedicine. There are diverse chemical groups that can be attached to SWCNTs in order for these tiny tubes to gain various functionalities, for example, water solubility. Due to the availability of these "functionalization" approaches, SWCNTs are seen as agents for a potential anti-cancer therapy.
View Article and Find Full Text PDFWe demonstrate an unusual electrochemical reaction of sulfur with lithium upon encapsulation in narrow-diameter (subnanometer) single-walled carbon nanotubes (SWNTs). Our study provides mechanistic insight on the synergistic effects of sulfur confinement and Li ion solvation properties that culminate in a new mechanism of these sub-nanoscale-enabled reactions (which cannot be solely attributed to the lithiation-delithiation of conventional sulfur). Two types of SWNTs with distinct diameters, produced by electric arc (EA-SWNTs, average diameter 1.
View Article and Find Full Text PDFUltraviolet (UV) photodetectors based on heterojunctions of conventional (Ge, Si, and GaAs) and wide bandgap semiconductors have been recently demonstrated, but achieving high UV sensitivity and visible-blind photodetection still remains a challenge. Here, we utilized a semitransparent film of p-type semiconducting single-walled carbon nanotubes (SC-SWNTs) with an energy gap of 0.68 ± 0.
View Article and Find Full Text PDFAdvances in the chemical vapor deposition (CVD) growth of graphene have made this material a very attractive candidate for a number of applications including transparent conductors, electronics, optoeletronics, biomedical devices and energy storage. The CVD method requires transfer of graphene on a desired substrate and this is most commonly accomplished with polymers. The removal of polymer carriers is achieved with organic solvents or thermal treatment which makes this approach inappropriate for application to plastic thin films such as polyethylene terephthalate substrates.
View Article and Find Full Text PDFOptical properties of electrochromic materials can be controlled by the application of an electric field allowing recent development of new applications such as smart windows technology for indoor climate control and energy conservation. We report the fabrication of a single-walled nanotube (SWNT) thin film based electro-optical modulator controlled by ionic liquid polarization in which the active electrochromic layer is made of a film of semiconducting (SC-) SWNTs and the counter-electrode is composed of a film of metallic (MT-) SWNTs. Optimization of this electro-optical cell allows the operations with an optical modulation depth of 3.
View Article and Find Full Text PDFThe Hammond Postulate and the Leffler analysis have provided a cornerstone in the understanding of reaction processes in organic chemistry for over 60 years, yet quantitative applications of these methodologies over the range of reactions envisaged in the original works remain elusive. In the present paper, we analyze a series of SN2 reactions in three solvents that lead to endothermic and exothermic reaction processes, and we show that within the hybridization reaction coordinate the SN2 reaction is fully consistent with both treatments. We give new presentations of the reaction energies as a function of reaction progress, which allow the generation of unified reaction coordinate diagrams that show a linear relationship between the hybridization metric of reaction progress and the relative energies of the stationary points on the potential surface as a function of structure and solvent as originally envisaged by Leffler and Hammond.
View Article and Find Full Text PDFEncapsulation of sulfur in HiPCO-SWNTs leads to large changes in the Raman spectra with the appearance of new peaks at 319, 395, and 715 cm(-1) which originate from the sulfur species within the SWNTs, while the high frequency SWNT bands (ν > 1200 cm(-1)) are decreased in intensity. The encapsulated species also shifts the near-IR interband electronic transitions to lower energy by more than 10%. These effects seem to originate with the van der Waals interaction of the confined sulfur species with the walls of the SWNTs which are not expected to be significant in the case of the previously studied large diameter SWNTs.
View Article and Find Full Text PDFThe in-plane alignment of graphite nanoplatelets (GNPs) in thin thermal interface material (TIM) layers suppresses the though-plane heat transport thus limiting the performance of GNPs in the geometry normally required for thermal management applications. Here we report a disruption of the GNP in-plane alignment by addition of spherical microparticles. The degree of GNP alignment was monitored by measurement of the anisotropy of electrical conductivity which is extremely sensitive to the orientation of high aspect ratio filler particles.
View Article and Find Full Text PDFSingle-walled carbon nanotube (SWNT) thin films provide a unique platform for the development of electronic and photonic devices because they combine the advantages of the outstanding physical properties of individual SWNTs with the capabilities of large area thin film manufacturing and patterning technologies. Flexible SWNT thin film based field-effect transistors, sensors, detectors, photovoltaic cells, and light emitting diodes have been already demonstrated, and SWNT thin film transparent, conductive coatings for large area displays and smart windows are under development. While chirally pure SWNTs are not yet commercially available, the marketing of semiconducting (SC) and metallic (MT) SWNTs has facilitated progress toward applications by making available materials of consistent electronic structure.
View Article and Find Full Text PDFWe report the substitutional doping of solid-state spiro-bis(5-methyl-1,9-oxido-phenalenyl)boron radical ([2]2B) by co-crystallization of this radical with the corresponding spiro-bis(5-methyl-1,9-oxido-phenalenyl)beryllium compound ([2]2Be). The pure compounds crystallize in different space groups ([2]2B, P1̅, Z = 2; [2]2Be, P2₁/c, Z = 4) with distinct packing arrangements, yet we are able to isolate crystals of composition [2]2B(1-x)Be(x), where x = 0-0.59.
View Article and Find Full Text PDFWe demonstrate ionic liquid (IL) gating of suspended few-layer MoS2 transistors, where ions can accumulate on both exposed surfaces. Upon application of IL, all free-standing samples consistently display more significant improvement in conductance than substrate-supported devices. The measured IL gate coupling efficiency is up to 4.
View Article and Find Full Text PDFWe spectroscopically analyze the effect of e-beam deposition of lanthanide metals on the electronic structure and conductivities of films of semiconducting (SC) single-walled carbon nanotubes (SWNTs) in high vacuum. We employ near-infrared and Raman spectroscopy to interpret the changes in the electronic structure of SWNTs on exposure to small amounts of the lanthanides (Ln = Sm, Eu, Gd, Dy, Ho, Yb), based on the behavior of the reference metals (M = Li, Cr) which are taken to exemplify ionic and covalent bonding, respectively. The analysis shows that while the lanthanides are more electropositive than the transition metals, in most cases they exhibit similar conductivity behavior which we interpret in terms of the formation of covalent bis-hexahapto bonds [(η(6)-SWNT)M(η(6)-SWNT), where M = La, Nd, Gd, Dy, Ho].
View Article and Find Full Text PDFUsing a radioactive glutamate uptake assay and immunolabeling, we report that single-walled carbon nanotubes, chemically functionalized with polyethylene glycol (SWCNT-PEG), delivered as a colloidal solute, cause an increase in the uptake of extracellular glutamate by astrocytes and an increase in the immunoreactivity of the glutamate transporter GLAST on their cell surface, which is likely a consequence of an increase in the immunoreactivity of glial fibrillary acidic protein. Additional corollary is that astrocytes exposed to SWCNT-PEG became larger and stellate, morphological characteristics of maturation and heightened activity of these glial cells. These results imply that SWCNT-PEG could potentially be used as a viable candidate for neural prosthesis applications, perhaps to alleviate the death toll of neurons due to glutamate excitotoxicity, a pathological process observed in brain and spinal cord injuries.
View Article and Find Full Text PDFWe report the crystallization of a subsitutionally doped organic conductor based on a host lattice composed of spiro-bis(phenalenyl)boron radicals. Co-crystallization of solutions of spiro-bis(9-oxidophenalenone)boron radical [PLY(O,O)]2B mixed with selected amounts of spiro-bis(9-oxidophenalenone)beryllium [PLY(O,O)]2Be leads to the formation of a series of solid-state solutions of composition [PLY(O,O)]2B(1-x)Be(x). The dopant molecules [PLY(O,O)]2Be serve to introduce holes into the lattice of spins provided by the [PLY(O,O)]2B radicals and lead to a systematic increase in the conductivity while decreasing the activation energy of the conduction process and leaving the solid-state structure relatively unperturbed.
View Article and Find Full Text PDFThe formation of covalent bonds to single-walled carbon nanotube (SWNT) or graphene surfaces usually leads to a decrease in the electrical conductivity and mobility as a result of the structural rehybridization of the functionalized carbon atoms from sp(2) to sp(3). In the present study, we explore the effect of metal deposition on semiconducting (SC-) and metallic (MT-) SWNT thin films in the vicinity of the percolation threshold and we are able to clearly delineate the effects of weak physisorption, ionic chemisorption with charge transfer, and covalent hexahapto (η(6)) chemisorption on these percolating networks. The results support the idea that for those metals capable of forming bis-hexahapto-bonds, the generation of covalent (η(6)-SWNT)M(η(6)-SWNT) interconnects provides a conducting pathway in the SWNT films and establishes the transition metal bis-hexahapto organometallic bond as an electronically conjugating linkage between graphene surfaces.
View Article and Find Full Text PDFAlterations in glial fibrillary acidic protein (GFAP) levels accompany the changes in the morphology and proliferation of astrocytes induced by colloidal solutes and films of carbon nanotubes (CNTs). To determine if GFAP is required for the effects of CNTs on astrocytes, we used astrocytes isolated from GFAP null mice. We find that selected astrocytic changes induced by CNTs are mediated by GFAP, i.
View Article and Find Full Text PDFWe report the response of the electrical conductivity of semiconducting single-walled carbon nanotube (SWNT) thin films on exposure to metal vapors of the early lanthanides under high vacuum conditions. We attribute the strongly enhanced conductivities observed on deposition of samarium and europium to charge transfer from the metals to the SWNT backbone, thereby leading to the first examples of mixed covalent-ionic bis-hexahapto bonds [(η(6)-SWNT)M(η(6)-SWNT), where M = Sm, Eu].
View Article and Find Full Text PDFThe cycloaddition reactions and noncovalent π interactions of 2,3-dimethoxybutadiene (DMBD), 9-methylanthracene (MeA), tetracyanoethylene (TCNE), and maleic anhydride (MA) with graphene models have been investigated using density functional theory (DFT) calculations. Reaction enthalpies have been obtained to assess the reactivity and selectivity of covalent and noncovalent functionalization. Results indicate that graphene edges may be functionalized by the four reagents through cycloaddition reactions, while the interior regions cannot react.
View Article and Find Full Text PDFCarbon-based magnetic materials and structures of mesoscopic dimensions may offer unique opportunities for future nanomagnetoelectronic/spintronic devices. To achieve their potential, carbon nanosystems must have controllable magnetic properties. We demonstrate that nitrophenyl functionalized graphene can act as a room-temperature 2D magnet.
View Article and Find Full Text PDFWe report the synthesis and properties of a series of spiro-bis(3,4,6,7-tetrachalcogenide-substituted-phenalenyl)boron salts and two of the corresponding tetrathioalkyl-substituted spiro-bis(phenalenyl)boron radicals [tetrathiomethyl (10) and tetrathioethyl (11)] in which all of the active positions of the phenalenyl (PLY) nucleus are functionalized. In the solid state, radicals 10 and 11 exist as a weak π-dimers due to the steric congestion of the thioalkyl groups in the superimposed PLY units. As a result, the spins are localized in the isolated (nonsuperimposed) PLY rings, and the structure, magnetic susceptibility measurements, and band structure calculations confirm that these PLY units are unable to undergo strong intermolecular interaction as a result of the orientation of the thioalkyl groups.
View Article and Find Full Text PDFWe used single-walled carbon nanotube (CNT) films to modulate the morpho-functional and proliferative characteristics of astrocytes. When plated on the CNT films of various thicknesses, astrocytes grow bigger and rounder in shape with a decrease in the immunoreactivity of glial fibrillary acidic protein along with an increase in their proliferation, changes associated with the dedifferentiation of astrocytes in culture. Thus, CNT films, as a coating material for electrodes used in brain machine interface, could reduce astrogliosis around the site of implantation.
View Article and Find Full Text PDFChemically modified single-walled carbon nanotubes (SWNTs) with varying degrees of functionalization were utilized for the fabrication of SWNT thin film catalyst support layers (CSLs) in polymer electrolyte membrane fuel cells (PEMFCs), which were suitable for benchmarking against the US DOE 2017 targets. Use of the optimum level of SWNT -COOH functionality allowed the construction of a prototype SWNT-based PEMFC with total Pt loading of 0.06 mg(Pt)/cm²--well below the value of 0.
View Article and Find Full Text PDF