IL-10 is a potent anti-inflammatory cytokine capable of suppressing a number of proinflammatory signals associated with intestinal inflammatory diseases, such as ulcerative colitis and Crohn's disease. Clinical use of human IL-10 (hIL-10) has been limited by anemia and thrombocytopenia following systemic injection, side effects that might be eliminated by a gut-restricted distribution. We have identified a transcytosis pathway used by cholix, an exotoxin secreted by nonpandemic forms of the intestinal pathogen A nontoxic fragment of the first 386 aa of cholix was genetically fused to hIL-10 to produce recombinant AMT-101.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) plays a central and pivotal role in controlling the pathways involved in the pathobiology of cancer, rheumatoid arthritis (RA), and other autoimmune disorders. ZYBT1 is a potent, irreversible, specific BTK inhibitor that inhibits the ibrutinib-resistant C481S BTK with nanomolar potency. ZYBT1 is found to be a promising molecule to treat both cancer and RA.
View Article and Find Full Text PDFSelective inhibition of janus kinase (JAK) has been identified as an important strategy for the treatment of autoimmune disorders. Optimization at the C2 and C4-positions of pyrimidine ring of Cerdulatinib led to the discovery of a potent and orally bioavailable 2,4-diaminopyrimidine-5-carboxamide based JAK3 selective inhibitor (11i). A cellular selectivity study further confirmed that 11i preferentially inhibits JAK3 over JAK1, in JAK/STAT signaling pathway.
View Article and Find Full Text PDFPI3Kδ is implicated in various inflammatory and autoimmune diseases. For the effective treatment of chronic immunological disorders such as rheumatoid arthritis, it is essential to develop isoform selective PI3Kδ inhibitors. Structure guided optimization of an imidazo-quinolinones based pan-PI3K/m-TOR inhibitor (Dactolisib) led to the discovery of a potent and orally bioavailable PI3Kδ isoform selective inhibitor (10h), with an improved efficacy in the animal models.
View Article and Find Full Text PDFZYTP1 is a novel Poly (ADP-ribose) polymerase protein inhibitor being developed for cancer indications. The focus of the work was to determine if ZYTP1 had a perpetrator role in the inhibition of cytochrome P450 (CYP) enzymes to aid dosing decisions during the clinical development of ZYTP1. ZYTP1 IC for CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4/5 was determined using human liver microsomes and LC-MS/MS detection.
View Article and Find Full Text PDFPurpose: Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme involved in the detection and repair of DNA damage. Studies have shown that inhibition of PARP and Tankyrase (TNKS) has significant antitumor effect in several types of cancers including BRCA-negative breast cancers.
Methods: Identification of ZYTP1, a novel PARP inhibitor, through a battery of in vitro assays and in vivo studies.
The nuclear receptor retinoic acid receptor-related orphan receptor gamma (RORγ or RORc) is a key transcription factor for the production of pro-inflammatory cytokines implicated in the pathogenesis of autoimmune diseases. Recently, small molecule inhibitors of RORc drew the enormous attention of the research community worldwide as a possible therapy for autoimmune diseases, mediated by the IL-17 cytokine. With the clinical proof-of-concept inferred from a small molecule inhibitor VTP-43742 for psoriasis and recent inflow of several RORc inhibitors into the clinic for therapeutic interventions in autoimmune diseases, this field continues to evolve.
View Article and Find Full Text PDFAim: A sensitive LC-MS/MS method was developed and validated for estimation of ZYAN1 in human blood/urine.
Methods: An analog internal standard IOX2 along with ZYAN1 was quantified using selective reaction monitoring in positive mode. The chromatographic separation was performed by gradient elution with C analytical column (3 µm, 50 mm × 2.
Background And Purpose: Dipeptidyl peptidase (DPP)-4 inhibitors increase levels of glucagon-like peptide-1 (GLP-1) and provide clinical benefit in the treatment of type 2 diabetes mellitus. As longer acting inhibitors have therapeutic advantages, we developed a novel DPP-4 inhibitor, ZY15557, that has a sustained action and long half-life.
Experimental Approach: We studied the potency, selectivity, efficacy and duration of action of ZY15557, in vitro, with assays of DPP-4 activity.
Background: Radial artery cannulation is a skillful procedure. An experienced anesthesiologist might also face difficulty in cannulating a feeble radial pulse.
Aim: The purpose of the study was to determine whether periradial subcutaneous administration of papaverine results in effective vasodilation and improvement in the palpability score of radial artery.
ZYDPLA1 is a long acting enzyme dipeptidyl peptidase-4 (DPP-4) inhibitor. The comparative effect of DPP-4 inhibition after intravenous (IV) and oral administration of ZYDPLA1 in a rat model was evaluated to answer the question of route dependency and/or the need of high plasma levels of ZYDPLA1. The study was conducted using parallel design in male Wistar rats for IV/oral route (n=9 and 6, for IV and oral respectively).
View Article and Find Full Text PDFXenobiotica
January 2018
GPR40/FFAR1 is a G protein-coupled receptor predominantly expressed in pancreatic β-cells and activated by long-chain free fatty acids, mediating enhancement of glucose-stimulated insulin secretion. A novel series of substituted 3-(4-aryloxyaryl)propanoic acid derivatives were prepared and evaluated for their activities as GPR40 agonists, leading to the identification of compound , which is highly potent in assays and exhibits robust glucose lowering effects during an oral glucose tolerance test in nSTZ Wistar rat model of diabetes (ED = 0.8 mg/kg; ED = 3.
View Article and Find Full Text PDFTGR5 is a G protein-coupled receptor (GPCR), activation of which promotes secretion of glucagon-like peptide-1 (GLP-1) and modulates insulin secretion. The 2-thio-imidazole derivative 6g was identified as a novel, potent, and selective TGR5 agonist (hTGR5 EC50 = 57 pM, mTGR5 = 62 pM) with a favorable pharmacokinetic profile. The compound 6g was found to have potent glucose lowering effects in vivo during an oral glucose tolerance test in DIO C57 mice with ED50 of 7.
View Article and Find Full Text PDFProlyl hydroxylase (PHD) inhibitors stabilize hypoxia inducible factor (HIF), and exert antianemic effect by potentiating erythropoietin (EPO) expression and down-regulation of hepcidin. ZYAN1 is a novel PHD inhibitor under clinical development for the treatment of anemia. The pharmacodynamic effects of acute and chronic dosing of ZYAN1 were assessed in normal and 5/6 nephrectomized Wistar rats.
View Article and Find Full Text PDFObjective: Dipeptidyl peptidase-4 (DPP-4) is responsible for degradation of glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), the endogenous incretins that stimulate glucose-dependent insulin secretion. The objective was to evaluate preclinical profile of a novel DPP-4 inhibitor ZYDPLA1.
Methods: In vitro inhibition potency and selectivity were assessed using recombinant enzymes and/or plasma.
Bioorg Med Chem Lett
March 2006
Beginning with a moderately potent PPARgamma agonist 9, a series of potent and highly subtype-selective PPARalpha agonists was identified through a systematic SAR study. Based on the results of the efficacy studies in the hamster and dog models of dyslipidemia and the desired pharmacokinetic data, the optimized compound 39 was selected for further profiling.
View Article and Find Full Text PDFThe compound, 5-{4-[3-(4-cyclohexyl-2-propylphenoxy)propoxy]phenyl}-1,3-oxazolidine-2,4-dione (compound A) is a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. PPARgamma agonists have proven useful in the treatment of type 2 diabetes, which is characterized by hyperglycemia, insulin resistance and/or abnormal insulin secretion. The metabolism of this oxazolidinedione (OZD) was investigated in male rat, dog, monkey and human liver microsomes, and recombinant human cytochrome P450 enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4) in the presence of NADPH.
View Article and Find Full Text PDFA series of chromane-2-carboxylic acid derivatives was synthesized and evaluated for PPAR agonist activities. A structure-activity relationship was developed toward PPARalpha/gamma dual agonism. As a result, (2R)-7-(3-[2-chloro-4-(4-fluorophenoxy)phenoxy]propoxy)-2-ethylchromane-2-carboxylic acid (48) was identified as a potent, structurally novel, selective PPARalpha/gamma dual agonist.
View Article and Find Full Text PDFA series of novel aryloxazolidine-2,4-diones was synthesized. A structure-activity relationship study of these compounds led to the identification of potent, orally active PPAR dual alpha/gamma agonists. Based on the results of efficacy studies in the db/db mice model of type 2 diabetes and the desired pharmacokinetic parameters, compound 12 was selected for further profiling.
View Article and Find Full Text PDFA novel series of 5-aryl thiazolidine-2,4-diones based dual PPARalpha/gamma agonists was identified. A number of highly potent and orally bioavailable analogues were synthesized. Efficacy study results of some of these analogues in the db/db mice model of type 2 diabetes showed them superior to rosiglitazone in correcting hyperglycemia and hypertriglyceridemia.
View Article and Find Full Text PDFThe synaptic vesicle protein synaptotagmin I has been proposed to serve as a Ca(2+) sensor for rapid exocytosis. Synaptotagmin spans the vesicle membrane once and possesses a large cytoplasmic domain that contains two C2 domains, C2A and C2B. Multiple Ca(2+) ions bind to the membrane proximal C2A domain.
View Article and Find Full Text PDFBiochemical and genetic studies indicate that synaptotagmin I functions as a Ca2+ sensor during synaptic vesicle exocytosis and as a membrane receptor for the clathrin adaptor complex, AP-2, during endocytosis. These functions involve the interaction of two conserved domains, C2A and C2B, with effector proteins. The C2B domain mediates Ca2+-triggered synaptotagmin oligomerization, binds AP-2 and is important for the interaction of synaptotagmin with Ca2+ channels.
View Article and Find Full Text PDF