Publications by authors named "RA Schumacher"

We report results of Λ hyperon production in semi-inclusive deep-inelastic scattering off deuterium, carbon, iron, and lead targets obtained with the CLAS detector and the Continuous Electron Beam Accelerator Facility 5.014 GeV electron beam. These results represent the first measurements of the Λ multiplicity ratio and transverse momentum broadening as a function of the energy fraction (z) in the current and target fragmentation regions.

View Article and Find Full Text PDF

We present the first measurement of dihadron angular correlations in electron-nucleus scattering. The data were taken with the CLAS detector and a 5.0 GeV electron beam incident on deuterium, carbon, iron, and lead targets.

View Article and Find Full Text PDF

Two new lactone lipids, scoriosin () and its methyl ester (), with a rare furylidene ring joined to a tetrahydrofurandione ring, were isolated from , commonly referred to as sooty mold. The planar structure of these compounds was assigned by 1D and 2D NMR. The conformational analysis of these molecules was undertaken to evaluate the relative and absolute configuration through GIAO NMR chemical shift analysis and ECD calculation.

View Article and Find Full Text PDF

Strange matter is believed to exist in the cores of neutron stars based on simple kinematics. If this is true, then hyperon-nucleon interactions will play a significant part in the neutron star equation of state. Yet, compared to other elastic scattering processes, there is very little data on Λ-N scattering.

View Article and Find Full Text PDF

Cognitive neuroscience methods can identify the fMRI-measured neural representation of familiar individual concepts, such as apple, and decompose them into meaningful neural and semantic components. This approach was applied here to determine the neural representations and underlying dimensions of representation of far more abstract physics concepts related to matter and energy, such as fermion and dark matter, in the brains of 10 Carnegie Mellon physics faculty members who thought about the main properties of each of the concepts. One novel dimension coded the measurability vs.

View Article and Find Full Text PDF

Language learning involves exposure to inconsistent systems - that is, systems where multiple patterns or methods exist to mark some meaning. Inconsistent systems often change to be more regular over time - they become systematized. However, some recent studies have reported that learners tend to reproduce inconsistency in the input, leading to models in which the language learning mechanism is basically preservatory.

View Article and Find Full Text PDF

The quark structure of the f_{2}(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq[over ¯]) resonance with quantum numbers J^{PC}=2^{++}. Recently, it was proposed that the f_{2}(1270) is a molecular state made from the attractive interaction of two ρ mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay ρ→π^{+}π^{-}, whereas decay to two neutral pions would likely be suppressed.

View Article and Find Full Text PDF

A first measurement of the longitudinal beam spin asymmetry A_{LU} in the semi-inclusive electroproduction of pairs of charged pions is reported. A_{LU} is a higher-twist observable and offers the cleanest access to the nucleon twist-3 parton distribution function e(x). Data have been collected in the Hall-B at Jefferson Lab by impinging a 5.

View Article and Find Full Text PDF

We have measured beam-spin asymmetries to extract the sinϕ moment A_{LU}^{sinϕ} from the hard exclusive e[over →]p→e^{'}nπ^{+} reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The A_{LU}^{sinϕ} moment has been measured up to 6.6  GeV^{2} in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time.

View Article and Find Full Text PDF

We report on the measurement of the γp→J/ψp cross section from E_{γ}=11.8  GeV down to the threshold at 8.2 GeV using a tagged photon beam with the GlueX experiment.

View Article and Find Full Text PDF

In the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this Letter, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering off a proton bound in ^{4}He.

View Article and Find Full Text PDF

We measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5  (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400  MeV/c.

View Article and Find Full Text PDF

First measurements of double-polarization observables in ω photoproduction off the proton are presented using transverse target polarization and data from the CEBAF Large Acceptance Spectrometer (CLAS) FROST experiment at Jefferson Lab. The beam-target asymmetry F has been measured using circularly polarized, tagged photons in the energy range 1200-2700 MeV, and the beam-target asymmetries H and P have been measured using linearly polarized, tagged photons in the energy range 1200-2000 MeV. These measurements significantly increase the database on polarization observables.

View Article and Find Full Text PDF

Short-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.

View Article and Find Full Text PDF

We measured the g_{1} spin structure function of the deuteron at low Q^{2}, where QCD can be approximated with chiral perturbation theory (χPT). The data cover the resonance region, up to an invariant mass of W≈1.9  GeV.

View Article and Find Full Text PDF

We report on the first measurement of the beam-spin asymmetry in the exclusive process of coherent deeply virtual Compton scattering off a nucleus. The experiment uses the 6 GeV electron beam from the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator at Jefferson Lab incident on a pressurized ^{4}He gaseous target placed in front of the CEBAF Large Acceptance Spectrometer (CLAS). The scattered electron is detected by CLAS and the photon by a dedicated electromagnetic calorimeter at forward angles.

View Article and Find Full Text PDF

We report the first beam-target double-polarization asymmetries in the γ+n(p)→π^{-}+p(p) reaction spanning the nucleon resonance region from invariant mass W=1500 to 2300 MeV. Circularly polarized photons and longitudinally polarized deuterons in solid hydrogen deuteride (HD) have been used with the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the E polarization observable for an effective neutron target.

View Article and Find Full Text PDF

Unpolarized and beam-polarized fourfold cross sections (d^{4}σ/dQ^{2}dx_{B}dtdϕ) for the ep→e^{'}p^{'}γ reaction were measured using the CLAS detector and the 5.75-GeV polarized electron beam of the Jefferson Lab accelerator, for 110 (Q^{2},x_{B},t) bins over the widest phase space ever explored in the valence-quark region. Several models of generalized parton distributions (GPDs) describe the data well at most of our kinematics.

View Article and Find Full Text PDF

There is a significant discrepancy between the values of the proton electric form factor, G(E)(p), extracted using unpolarized and polarized electron scattering. Calculations predict that small two-photon exchange (TPE) contributions can significantly affect the extraction of G(E)(p) from the unpolarized electron-proton cross sections. We determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections using a simultaneous, tertiary electron-positron beam incident on a liquid hydrogen target and detecting the scattered particles in the Jefferson Lab CLAS detector.

View Article and Find Full Text PDF
Article Synopsis
  • A study was conducted at Jefferson Lab using a 6 GeV electron beam to measure how photons are produced by protons in a deeply inelastic scattering context.
  • The researchers analyzed target-spin asymmetries from specific electron-proton-photon events across various kinematic conditions, providing data in 166 four-dimensional bins.
  • The findings help improve our understanding of the proton's axial charge distribution and offer critical constraints for current generalized parton distribution models.
View Article and Find Full Text PDF

We measured the ratios of electroproduction cross sections from a proton target for three exclusive meson-baryon final states: ΛK(+), pπ(0), and nπ(+), with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization, we extract qq creation probabilities for the first time in exclusive two-body production, in which only a single qq pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to nonstrange pairs, similar to that seen in high-energy production.

View Article and Find Full Text PDF

The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs.

View Article and Find Full Text PDF

We have measured cross sections for the γ(3)He → pd reaction at photon energies of 0.4-1.4 GeV and a center-of-mass angle of 90°.

View Article and Find Full Text PDF

Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.

View Article and Find Full Text PDF