Publications by authors named "RA Buhrman"

Spin backflow and spin-memory loss have been well established to considerably lower the interfacial spin transmissivity of metallic magnetic interfaces and thus the energy efficiency of spin-orbit torque technologies. Here, we report that spin backflow and spin-memory loss at Pt-based heavy metal-ferromagnet interfaces can be effectively eliminated by inserting an insulating paramagnetic NiO layer of optimum thickness. The latter enables the thermal magnon-mediated essentially unity spin-current transmission at room temperature due to considerably enhanced effective spin-mixing conductance of the interface.

View Article and Find Full Text PDF

We report spin-torque ferromagnetic resonance studies of the efficiency of the damping-like (ξ) spin-orbit torque exerted on an adjacent ferromagnet film by current flowing in epitaxial (001) and (110) IrO thin films. IrO possesses Dirac nodal lines (DNLs) in the band structure that are gapped by spin-orbit coupling, which could enable a very high spin Hall conductivity, σ. We find that the (001) films do exhibit exceptionally high ξ ranging from 0.

View Article and Find Full Text PDF

We report measurements of current-induced thermoelectric and spin-orbit torque effects within devices in which multilayers of the semiconducting two-dimensional van der Waals magnet CrGeTe (CGT) are integrated with Pt and Ta metal overlayers. We show that the magnetic orientation of the CGT can be detected accurately either electrically (using an anomalous Hall effect) or optically (using magnetic circular dichroism) with good consistency. The samples exhibit large thermoelectric effects, but nevertheless, the spin-orbit torque can be measured quantitatively using the angle-dependent second harmonic Hall technique.

View Article and Find Full Text PDF

One of the most challenging obstacles to realizing exascale computing is minimizing the energy consumption of L2 cache, main memory, and interconnects to that memory. For promising cryogenic computing schemes utilizing Josephson junction superconducting logic, this obstacle is exacerbated by the cryogenic system requirements that expose the technology's lack of high-density, high-speed and power-efficient memory. Here we demonstrate an array of cryogenic memory cells consisting of a non-volatile three-terminal magnetic tunnel junction element driven by the spin Hall effect, combined with a superconducting heater-cryotron bit-select element.

View Article and Find Full Text PDF

The effective spin-mixing conductance (G_{eff}^{↑↓}) of a heavy-metal-ferromagnet (HM-FM) interface characterizes the efficiency of the interfacial spin transport. Accurately determining G_{eff}^{↑↓} is critical to the quantitative understanding of measurements of direct and inverse spin Hall effects. G_{eff}^{↑↓} is typically ascertained from the inverse dependence of magnetic damping on the FM thickness under the assumption that spin pumping is the dominant mechanism affecting this dependence.

View Article and Find Full Text PDF

More than a decade after the first theoretical and experimental studies of the spin Hall conductivity (SHC) of Pt, both its dominant origin and amplitude remain in dispute. We report the experimental determination of the rapid variation of the intrinsic SHC of Pt with the carrier lifetime (τ) in the dirty-metal regime by incorporating finely dispersed MgO intersite impurities into the Pt, while maintaining its essential band structure. This conclusively validates the theoretical prediction that the SHC in Pt in the dirty-metal regime should be dominated by the intrinsic contribution, and should decrease rapidly with shortening τ.

View Article and Find Full Text PDF

Spin-orbit torques (SOT) in thin film heterostructures originate from strong spin-orbit interactions (SOI) that, in the bulk, generate a spin current due either to extrinsic spin-dependent, skew, or/and side-jump scattering or to intrinsic Berry curvature in the conduction bands. While most SOT studies have focused on materials with heavy metal components, the oxide perovskite SrRuO has been predicted to have a pronounced Berry curvature. Through quantification of its spin current by the SOT exerted on an adjacent Co ferromagnetic layer, we determine that SrRuO has a strongly temperature ( T)-dependent spin Hall conductivity σ , increasing with the electrical conductivity, consistent with expected behavior of the intrinsic effect in the "dirty metal" regime.

View Article and Find Full Text PDF

Despite intense efforts it has remained unresolved whether and how interfacial spin-orbit coupling (ISOC) affects spin transport across heavy-metal (HM)-ferromagnet (FM) interfaces. Here we report conclusive experiment evidence that the ISOC at HM/FM interfaces is the dominant mechanism for "spin memory loss". An increase in ISOC significantly reduces, in a linear manner, the dampinglike spin-orbit torque (SOT) exerted on the FM layer via degradation of the spin transparency of the interface for spin currents generated in the HM.

View Article and Find Full Text PDF

We report measurements of current-induced torques in heterostructures of Permalloy (Py) with TaTe, a transition-metal dichalcogenide (TMD) material possessing low crystal symmetry, and observe a torque component with Dresselhaus symmetry. We suggest that the dominant mechanism for this Dresselhaus component is not a spin-orbit torque but rather the Oersted field arising from a component of current that flows perpendicular to the applied voltage due to resistance anisotropy within the TaTe. This type of transverse current is not present in wires made from a single uniform layer of a material with resistance anisotropy but will result whenever a material with resistance anisotropy is integrated into a heterostructure with materials having different resistivities, thereby producing a spatially nonuniform pattern of current flow.

View Article and Find Full Text PDF

Robust spin Hall effects (SHE) have recently been observed in nonmagnetic heavy metal systems with strong spin-orbit interactions. These SHE are either attributed to an intrinsic band-structure effect or to extrinsic spin-dependent scattering from impurities, namely, side jump or skew scattering. Here we report on an extraordinarily strong spin Hall effect, attributable to spin fluctuations, in ferromagnetic Fe_{x}Pt_{1-x} alloys near their Curie point, tunable with x.

View Article and Find Full Text PDF

We investigate fast-pulse switching of in-plane-magnetized magnetic tunnel junctions (MTJs) within 3-terminal devices in which spin-transfer torque is applied to the MTJ by the giant spin Hall effect. We measure reliable switching, with write error rates down to 10, using current pulses as short as just 2 ns in duration. This represents the fastest reliable switching reported to date for any spin-torque-driven magnetic memory geometry and corresponds to a characteristic time scale that is significantly shorter than predicted possible within a macrospin model for in-plane MTJs subject to thermal fluctuations at room temperature.

View Article and Find Full Text PDF

We report measurements of the spin torque efficiencies in perpendicularly magnetized Pt/Co bilayers where the Pt resistivity ρ_{Pt} is strongly dependent on thickness t_{Pt}. The dampinglike spin Hall torque efficiency per unit current density ξ_{DL}^{j} varies significantly with t_{Pt}, exhibiting a peak value ξ_{DL}^{j}=0.12 at t_{Pt}=2.

View Article and Find Full Text PDF

We show that a direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junction (MTJ) contacting the nanomagnet. The oscillation frequency can be controlled using the MTJ bias to tune the magnetic anisotropy.

View Article and Find Full Text PDF

We show that in a perpendicularly magnetized Pt/Co bilayer the spin-Hall effect (SHE) in Pt can produce a spin torque strong enough to efficiently rotate and switch the Co magnetization. We calculate the phase diagram of switching driven by this torque, finding quantitative agreement with experiments. When optimized, the SHE torque can enable memory and logic devices with similar critical currents and improved reliability compared to conventional spin-torque switching.

View Article and Find Full Text PDF

Spin currents can apply useful torques in spintronic devices. The spin Hall effect has been proposed as a source of spin current, but its modest strength has limited its usefulness. We report a giant spin Hall effect (SHE) in β-tantalum that generates spin currents intense enough to induce efficient spin-torque switching of ferromagnets at room temperature.

View Article and Find Full Text PDF

A pure spin current generated within a nonlocal spin valve can exert a spin-transfer torque on a nanomagnet. This nonlocal torque enables new design schemes for magnetic memory devices that do not require the application of large voltages across tunnel barriers that can suffer electrical breakdown. Here we report a quantitative measurement of this nonlocal spin torque using spin-torque-driven ferromagnetic resonance.

View Article and Find Full Text PDF

We discuss recent highlights from research at Cornell University, Ithaca, New York, regarding the use of spin-transfer torques to control magnetic moments in nanoscale ferromagnetic devices. We highlight progress on reducing the critical currents necessary to produce spin-torque-driven magnetic switching, quantitative measurements of the magnitude and direction of the spin torque in magnetic tunnel junctions, and single-shot measurements of the magnetic dynamics generated during thermally assisted spin-torque switching.

View Article and Find Full Text PDF

We present the first space- and time-resolved images of the spin-torque-induced steady-state oscillation of a magnetic vortex in a spin-valve nanostructure. We find that the vortex structure in a nanopillar is considerably more complicated than the 2D idealized structure often-assumed, which has important implications for the driving efficiency. The sense of the vortex gyration is uniquely determined by the vortex core polarity, confirming that the spin-torque acts as a source of negative damping even in such a strongly nonuniform magnetic system.

View Article and Find Full Text PDF

We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field from the current also generates a ferromagnetic resonance signal but with a different symmetry.

View Article and Find Full Text PDF

We report single-shot measurements of resistance versus time for thermally assisted spin-torque switching in magnetic tunnel junctions. We achieve the sensitivity to resolve the magnetic dynamics prior to as well as during switching, yielding detailed views of switching modes and variations between events. Analyses of individual traces allow measurements of coherence times, nonequilibrium excitation spectra, and variations in magnetization precession amplitude.

View Article and Find Full Text PDF

The successful operation of spin-based data storage devices depends on thermally stable magnetic bits. At the same time, the data-processing speeds required by today's technology necessitate ultrafast switching in storage devices. Achieving both thermal stability and fast switching requires controlling the effective damping in magnetic nanoparticles.

View Article and Find Full Text PDF

We report time-resolved measurements of current-induced reversal of a free magnetic layer in Permalloy/Cu/Permalloy elliptical nanopillars at temperatures T=4.2 K to 160 K. Comparison of the data to Landau-Lifshitz-Gilbert macrospin simulations of the free layer switching yields numerical values for the spin torque and the Gilbert damping parameters as functions of T.

View Article and Find Full Text PDF

We demonstrate a technique that enables ferromagnetic resonance measurements of the normal modes for magnetic excitations in individual nanoscale ferromagnets, smaller in volume by more than a factor of 50 compared to individual ferromagnetic samples measured by other resonance techniques. Studies of the resonance frequencies, amplitudes, linewidths, and line shapes as a function of microwave power, dc current, and magnetic field provide detailed new information about the exchange, damping, and spin-transfer torques that govern the dynamics in magnetic nanostructures.

View Article and Find Full Text PDF

We employ the spin-torque response of magnetic tunnel junctions with ultrathin MgO tunnel barrier layers to investigate the relationship between spin transfer and tunnel magnetoresistance (TMR) under finite bias, and find that the spin torque per unit current exerted on the free layer decreases by < 10% over a bias range where the TMR decreases by > 40%. This is inconsistent with free-electron-like spin-polarized tunneling and reduced-surface-magnetism models of the TMR bias dependence, but is consistent with magnetic-state-dependent decay lengths in the tunnel barrier.

View Article and Find Full Text PDF

We present time-resolved measurements of gigahertz-scale magnetic dynamics caused by torque from a spin-polarized current. By working in the time domain, we determined the motion of the magnetic moment throughout the process of spin-transfer-driven switching, and we measured turn-on times of steady-state precessional modes. Time-resolved studies of magnetic relaxation allow for the direct measurement of magnetic damping in a nanomagnet and prove that this damping can be controlled electrically using spin-polarized currents.

View Article and Find Full Text PDF