Understanding the nature and onset of neurophysiological changes, and the selective vulnerability of central hub regions in the functional network, may aid in managing the growing impact of Alzheimer's disease on society. However, the precise neurophysiological alterations occurring in the pre-clinical stage of human Alzheimer's disease remain controversial. This study aims to provide increased insights on quantitative neurophysiological alterations during a true early stage of Alzheimer's disease.
View Article and Find Full Text PDFLocomotor activity can serve as a readout to identify discomfort and pain. Therefore, monitoring locomotor activity following interventions that induce potential discomfort may serve as a reliable method for evaluating animal health, complementing conventional methods such as body weight measurement. In this study, we used the digital ventilated cage (DVC) system for the assessment of circadian locomotor activity, in addition to body weight monitoring, following intracranial stereotaxic surgery in an Alzheimer's disease mouse model (C57BL/6J/APPswe/PSEN1dE9).
View Article and Find Full Text PDFTau protein hyperphosphorylation and aggregation are key pathological events in neurodegenerative tauopathies such as Alzheimer's disease. Interestingly, seasonal hibernators show extensive tau hyperphosphorylation during torpor, i.e.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common cause of dementia worldwide and yet remains without effective therapy. Amongst the many proposed causes of AD, the mitochondrial cascade hypothesis is gaining attention. Accumulating evidence shows that mitochondrial dysfunction is a driving force behind synaptic dysfunction and cognitive decline in AD patients.
View Article and Find Full Text PDF