The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consumed and/or secreted by hMSCs and at what rates? To answer these questions, hMSCs were cultured on tissue culture plastic and in a bioreactor, and their amino acid profile was analyzed. The results showed that the kinetics of hMSCs growth and amino acid metabolism were significantly higher for hMSCs in tissue culture plastic than in the bioreactor.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
February 2010
Adult stem cells, or mesenchymal stromal cells (MSCs), are of great potential for cell therapy and tissue-engineering applications. However, for therapeutic use, these cells need to be isolated from tissue or a biopsy and efficiently expanded, as they cannot be harvested in sufficient quantities from the body. In our opinion, efficient expansion of MSCs can be achieved in a microcarrier-based cultivation system.
View Article and Find Full Text PDFThe aim of this study was to evaluate a semi-automated perfusion bioreactor system for the production of clinically relevant amounts of human tissue-engineered bone. Human bone marrow stromal cells (hBMSCs) of eight donors were dynamically seeded and proliferated in a perfusion bioreactor system in clinically relevant volumes (10 cm(3)) of macroporous biphasic calcium phosphate scaffolds (BCP particles, 2-6 mm). Cell load and distribution were shown using methylene blue staining.
View Article and Find Full Text PDFBetter quantitative understanding of human mesenchymal stem cells (hMSCs) metabolism is needed to identify, understand, and subsequently optimize the processes in expansion of hMSCs in vitro. For this purpose, we analyzed growth of hMSCs in vitro with a mathematical model based on the mass balances for viable cell numbers, glucose, lactate, glutamine, and glutamate. The mathematical modeling had two aims: (1) to estimate kinetic parameters of important metabolites for hMSC monolayer cultures, and (2) to quantitatively assess assumptions on growth of hMSCs.
View Article and Find Full Text PDFMost therapeutic applications of bone marrow stromal cells (MSCs), or mesenchymal stem cells, require expansion of these cells. This study aimed to obtain more information about human MSCs regarding their expansion characteristics: growth, metabolism, and growth inhibitors. In addition, the same expansion factors were examined for (model species) goat and rat MSCs to evaluate differences between MSCs of mammalian species.
View Article and Find Full Text PDF