A rapid point-of-care method for the colorimetric detection of cisplatin was developed, exploiting the efficient conversion of the chemotherapeutic drug into a high-performance nanocatalyst with peroxidase enzyme mimics. This assay provides high specificity and ppb-detection sensitivity with the naked eye or a smartphone-based readout, outperforming many standard laboratory-based techniques. The nanocatalyst-enabled colorimetric assay can be integrated with machine-learning methods, providing accurate quantitative measurements.
View Article and Find Full Text PDFMitochondria and peroxisomes are metabolically interconnected and functionally active subcellular organelles. These two dynamic organelles, share a number of common biochemical functions such as β-oxidation of fatty acids and detoxification of peroxides. The biogenesis and morphology of both these organelles in the mammalian cells is controlled by common transcription factors like PGC1α, and by a common fission machinery comprising of fission proteins like DRP1, Mff, and hFis1, respectively.
View Article and Find Full Text PDFThis paper presents the T-RexNet approach to detect small moving objects in videos by using a deep neural network. T-RexNet combines the advantages of Single-Shot-Detectors with a specific feature-extraction network, thus overcoming the known shortcomings of Single-Shot-Detectors in detecting small objects. The deep convolutional neural network includes two parallel paths: the first path processes both the original picture, in gray-scale format, and differences between consecutive frames; in the second path, differences between a set of three consecutive frames is only handled.
View Article and Find Full Text PDF