This work employs Density Functional Theory (DFT) to investigate the characteristics of ATiO3 (A= Mn, Fe, Ni) by utilizing GGA and DFT+U formalisms. Our results reveal that the investigated compounds exhibit a ground-state magnetic arrangement in the G-type antiferromagnetic configuration. Substitution of the A-site atoms along the row leads to a decrease in volume due to poor electronic shielding effects with transition metals.
View Article and Find Full Text PDFRecent studies have reported that lead-halide perovskites are the most efficient energy-harvesting materials. Regardless of their high-output energy and structural stability, lead-based products have risk factors due to their toxicity. Therefore, lead-free perovskites that offer green energy are the expected alternatives.
View Article and Find Full Text PDFIn this study, we explored the electronic and thermoelectric (TE) properties of the Na-based Quaternary Heusler Alloys (QHAs) NaHfXGe (X = Co, Rh, Ir) using density functional theory (DFT). We performed the spin-polarized DFT calculations at the general gradient approximation (GGA) level and confirmed the ground state non-magnetic configuration of NaHfXGe. The mechanical and thermodynamical stabilities are analyzed and discussed to validate the stability by calculating the elastic constant and phonon dispersion curve.
View Article and Find Full Text PDFMotivated by our previous work on pristine NaSiO, we proceeded with calculations on the structural, electronic, mechanical and piezoelectric properties of complex glass-like NaSi Ge O ( = 0.0, 0.25, 0.
View Article and Find Full Text PDFThe structural, mechanical, electronic, optical and piezoelectric properties of NaSiO are studied under varying compressive unidirectional pressure (0-50 GPa with a difference of 10 GPa) using density functional theory (DFT). The calculated structural properties agree well with previously reported results. At 12 GPa, our calculation shows a structural phase transition from orthorhombic 2 to triclinic 1.
View Article and Find Full Text PDF