Drug-loaded liposomes incorporated in nanofibrous scaffolds is a promising approach as a multi-unit nanoscale system, which combines the merits of both liposomes and nanofibers (NFs), eliminating the drawback of liposomes' poor stability on the one hand and offering a higher potential of controlled drug release and enhanced therapeutic efficacy on the other hand. The current systematic review, which underwent a rigorous search process in PubMed, Web of Science, Scopus, Embase, and Central (Cochrane) employing (Liposome AND nanofib* AND electrosp*) as search keywords, aims to present the recent studies on using this synergic system for different therapeutic applications. The search was restricted to original, peer-reviewed studies published in English between 2014 and 2024.
View Article and Find Full Text PDFDue to their small size, flexibility, and adhesive properties, extracellular vesicles (EVs) hold promises as effective drug delivery systems. However, challenges such as the variability in vesicle types and the need to maintain their integrity for medical applications exist. Curcumin, a compound found in turmeric and known for its diverse health benefits, including anti-cancer and anti-inflammatory properties, faces obstacles in clinical use due to issues like low solubility, limited absorption, and rapid breakdown in the body.
View Article and Find Full Text PDFElectrospun nanofibers can be utilized to develop patient-centric ophthalmic formulations with reasonable bioavailability at the targeted site. The current study aimed to develop 0.1% w/w of nepafenac-loaded electrospun nanofibrous webs as potential candidates for ocular delivery of nepafenac with improved solubility and stability.
View Article and Find Full Text PDFBackground: This study investigates combining 3D printing with traditional compression methods to develop a multicomponent, controlled-release drug delivery system (DDS). The system uses osmotic tablet layers and a semipermeable membrane to control drug release, similar to modular Lego® structures.
Methods: The DDS comprises two directly compressed tablet layers (push and pull) and a semipermeable membrane, all contained within a 3D-printed frame.
A novel ophthalmic delivery system utilizing levofloxacin-loaded, preservative-free, nanofiber-based inserts was investigated. Polyvinyl alcohol (PVA) and Poloxamer 407 (Polox)were employed as matrix materials, while hydroxypropyl-beta-cyclodextrin (HP-β-CD) was a solubilizer. The formulations were prepared via electrospinning and characterized for fiber morphology, drug dissolution, cytotoxicity, and antimicrobial activity.
View Article and Find Full Text PDF