Advancements in single-cell analyzis technologies, particularly single-cell RNA sequencing (scRNA-seq) and Fluorescence-Activated Cell Sorting (FACS), have enabled the analyzis of cellular diversity by providing resolutions that were not available previously. These methods enable the simultaneous analyzis of thousands of individual transcriptomes, facilitating the classification of cells into distinct subpopulations, based on transcriptomic differences, adding a new level of complexity to biomolecular and medical research. Fibroblasts, despite being one of the most abundant cell types in the human body and forming the structural backbone of tissues and organs, remained poorly characterized for a long time.
View Article and Find Full Text PDFAdipocytes derived from 3T3-L1 cells are a gold standard for analyses of adipogenesis processes and the metabolism of fat cells. A widely used histological and immunohistochemical staining and mass spectrometry lipidomics are mainly aimed for examining lipid droplets (LDs). Visualizing other cellular compartments contributing to the cellular machinery requires additional cell culturing for multiple labeling.
View Article and Find Full Text PDFFibroblasts are among the most abundant cell types in the human body, playing crucial roles in numerous physiological processes, including the structural maintenance of the dermis, production of extracellular matrix components, and mediation of inflammatory responses. Despite their importance, fibroblasts remain one of the least characterized cell populations. The advent of single-cell analysis techniques, particularly single-cell RNA sequencing (scRNA-seq) and fluorescence-activated cell sorting (FACS), has enabled detailed investigations into fibroblast biology.
View Article and Find Full Text PDFThe full understanding of molecular mechanisms of cell differentiation requires a holistic view. Here we combine label-free FTIR and Raman hyperspectral imaging with data mining to detect the molecular cell composition enabling noninvasive monitoring of cell differentiation and identifying biochemical heterogeneity. Mouse adipose-derived mesenchymal stem cells (AD-MSCs) undergoing adipogenesis were followed by Raman and FT-IR imaging, Oil Red, and immunofluorescence.
View Article and Find Full Text PDFThe blood-brain barrier (BBB) is responsible for maintaining homeostasis within the central nervous system (CNS). Depending on its permeability, certain substances can penetrate the brain, while others are restricted in their passage. Therefore, the knowledge about BBB structure and function is essential for understanding physiological and pathological brain processes.
View Article and Find Full Text PDF