A flow photochemical reaction system for a π-Lewis acidic metal-catalyzed cyclization/radical addition sequence was developed, which utilizes in situ-generated 2-benzopyrylium intermediates as the photoredox catalyst and electrophilic substrates. The key 2-benzopyrylium intermediates were generated in the flow reaction system through the intramolecular cyclization of -carbonyl alkynylbenzene derivatives by the π-Lewis acidic metal catalyst AgNTf and the subsequent proto-demetalation with trifluoroacetic acid. The 2-benzopyrylium intermediates underwent further photoreactions with benzyltrimethylsilane derivatives as the donor molecule in the flow photoreactor to provide 1-isochromene derivatives in higher yields in most cases than the batch reaction system.
View Article and Find Full Text PDFA π-Lewis acidic metal-catalysed cyclisation/photochemical radical addition sequence was developed, which utilises generated 2-benzopyrylium cation intermediates as photoredox catalysts and electrophilic substrates to form 1-isochromene derivatives in good yields in most cases. The key 2-benzopyrylium intermediates were generated through the activation of the alkyne moiety of -carbonyl alkynylbenzene derivatives by such π-Lewis acidic metal catalysts as AgNTf and Cu(NTf), and the subsequent intramolecular cyclisation and proto-demetalation using trifluoroacetic acid. Further photo-excitation of the 2-benzopyrylium intermediates facilitated single-electron transfer from a benzyltrimethylsilane derivative as a donor molecule to promote the radical addition of arylmethyl radicals to the 2-benzopyrylium intermediates.
View Article and Find Full Text PDFWe collected 3180 records of oleic acid (C18:1) and monounsaturated fatty acid (MUFA) measured using gas chromatography (GC) and 6960 records of C18:1 and MUFA measured using near-infrared spectroscopy (NIRS) in intermuscular fat samples of Japanese Black cattle. We compared genomic prediction performance for four linear models (genomic best linear unbiased prediction [GBLUP], kinship-adjusted multiple loci [KAML], BayesC, and BayesLASSO) and five machine learning models (Gaussian kernel [GK], deep kernel [DK], random forest [RF], extreme gradient boost [XGB], and convolutional neural network [CNN]). For GC-based C18:1 and MUFA, KAML showed the highest accuracies, followed by BayesC, XGB, DK, GK, and BayesLASSO, with more than 6% gain of accuracy by KAML over GBLUP.
View Article and Find Full Text PDFBackground/aim: Pyra-Metho-Carnil (PMC) has been identified as a novel candidate compound for treating numerous malignancies; however, its mechanism of action remains unknown. In this study, we conducted RNA-sequencing (RNA-seq) analyses to elucidate the mechanism of PMC against human colorectal cancer cells harboring mutant KRAS (mtKRAS).
Materials And Methods: RNA-seq analyses of the HKe3-wild-type KRAS and HKe3-mtKRAS spheroids treated with DMSO or PMC for 6 days were performed.
A general protocol for the synthesis of α,β-dehydroamino acids and their peptides was developed. Proline efficiently catalyzed an aldol condensation reaction of a glycine Schiff base with a variety of aldehydes. The hydroxy group on the benzophenone imine was crucial for high / selectivity and further transimination for protecting group-free α,β-dehydroamino esters.
View Article and Find Full Text PDF