Synapses "govern" the computational properties of any given network in the brain. However, their detailed quantitative morphology is still rather unknown, particularly in humans. Quantitative 3D-models of synaptic boutons (SBs) in layer (L)6a and L6b of the temporal lobe neocortex (TLN) were generated from biopsy samples after epilepsy surgery using fine-scale transmission electron microscopy, 3D-volume reconstructions and electron microscopic tomography.
View Article and Find Full Text PDFModern electron microscopy (EM) such as fine-scale transmission EM, focused ion beam scanning EM, and EM tomography have enormously improved our knowledge about the synaptic organization of the normal, developmental, and pathologically altered brain. In contrast to various animal species, comparably little is known about these structures in the human brain. Non-epileptic neocortical access tissue from epilepsy surgery was used to generate quantitative 3D models of synapses.
View Article and Find Full Text PDFThalamocortical posterior nucleus (Po) axons innervating the vibrissal somatosensory (S1) and motor (MC) cortices are key links in the brain neuronal network that allows rodents to explore the environment whisking with their motile snout vibrissae. Here, using fine-scale high-end 3D electron microscopy, we demonstrate in adult male C57BL/6 wild-type mice marked differences between MC versus S1 Po synapses in (1) bouton and active zone size, (2) neurotransmitter vesicle pool size, (3) distribution of mitochondria around synapses, and (4) proportion of synapses established on dendritic spines and dendritic shafts. These differences are as large, or even more pronounced, than those between Po and ventro-posterior thalamic nucleus synapses in S1.
View Article and Find Full Text PDFSynapses are key structural determinants for information processing and computations in the normal and pathologically altered brain. Here, the quantitative morphology of excitatory synaptic boutons in the "reeler" mutant, a model system for various neurological disorders, was investigated and compared with wild-type (WT) mice using high-resolution, fine-scale electron microscopy (EM) and quantitative three-dimensional (3D) models of synaptic boutons. Beside their overall geometry, the shape and size of presynaptic active zones (PreAZs) and postsynaptic densities (PSDs) forming the active zones and the three pools of synaptic vesicles (SVs), namely the readily releasable pool (RRP), the recycling pool (RP), and the resting pool, were quantified.
View Article and Find Full Text PDFSynapses are fundamental building blocks controlling and modulating the 'behavior' of brain networks. How their structural composition, most notably their quantitative morphology underlie their computational properties remains rather unclear, particularly in humans. Here, excitatory synaptic boutons (SBs) in layer 4 (L4) of the temporal lobe neocortex (TLN) were quantitatively investigated.
View Article and Find Full Text PDF