Biochem Mosc Suppl B Biomed Chem
May 2022
The review summarizes literature data on molecular and biochemical mechanisms of nonspecific protection of respiratory epithelium. The special attention is paid to comprehensive analysis of up-to-date data on the activity of the lactoperoxidase system expressed on the surface of the respiratory epithelium which provides the generation of hypothiocyanate and hypoiodite in the presence of locally produced or inhaled hydrogen peroxide. Molecular mechanisms of production of active compounds with antiviral and antibacterial effects, expression profiles of enzymes, transporters and ion channels involved in the generation of hypothiocyanite and hypoiodite in the mucous membrane of the respiratory system in physiological and pathological conditions (inflammation) are discussed.
View Article and Find Full Text PDFThe review focuses on molecular and biochemical mechanisms of nonspecific protection of respiratory epithelium. The authors provide a comprehensive analysis of up-to-date data on the activity of the lactoperoxidase system expressed on the surface of the respiratory epithelium which provides the generation of hypothiocyanate and hypoiodite in the presence of locally produced or inhaled hydrogen peroxide. Molecular mechanisms of production of active compounds with antiviral and antibacterial effects, expression profiles of enzymes, transporters and ion channels involved in the generation of hypothiocyanite and hypoiodate in the mucous membrane of the respiratory system in physiological and pathological conditions (inflammation) are discussed.
View Article and Find Full Text PDFThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis.
View Article and Find Full Text PDFSocial recognition is the sensitive domains of complex behavior critical for identification, interpretation and storage of socially meaningful information. Social recognition develops throughout childhood and adolescent, and is affected in a wide variety of psychiatric disorders. Recently, new data appeared on the molecular mechanisms of these processes, particularly, the excitatory-inhibitory (E/I) ratio which is modified during development, and then E/I balance is established in the adult brain.
View Article and Find Full Text PDFBlood-brain barrier (BBB) modeling is a huge area of research covering study of intercellular communications and development of BBB, establishment of specific properties that provide controlled permeability of the barrier. Current approaches in designing new BBB models include development of new (bio) scaffolds supporting barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation of BBB permeability; application of modern analytical techniques for screening the transfer of metabolites, bio-macromolecules, selected drug candidates and drug delivery systems; establishment of 3D models; application of microfluidic technologies; reconstruction of microphysiological systems with the barrier constituents. Acceptance of idea that BBB models should resemble real functional activity of the barrier in different periods of ontogenesis and in different (patho) physiological conditions leads to proposal that establishment of BBB model with alterations specific for aging brain is one of current challenges in neurosciences and bioengineering.
View Article and Find Full Text PDF