Western blot processing is a well-established procedure that includes protein extraction from tissues and cells, gel electrophoresis separation, transfer to a membrane, and immunodetection with specific antibodies. Here, we show that optimization of washing helps to maximize the specific interactions of antigens and antibodies. Performing all washing steps at 4 °C ensures a maximal signal to noise ratio and reduces nonspecific signals.
View Article and Find Full Text PDFThe molecular basis of selective neuronal vulnerability in Alzheimer's disease (AD) remains poorly understood. Using basal forebrain cholinergic neurons (BFCNs) as a model and immunohistochemistry, we have demonstrated significant age-related loss of the calcium-binding protein calbindin-D(28K) (CB) from BFCN, which was associated with tangle formation and degeneration in AD. Here, we determined alterations in RNA and protein for CB and the Ca(2+)-responsive proteins Ca(2+)/calmodulin-dependent protein kinase I (CaMKI), growth-associated protein-43 (GAP43), and calpain in the BF.
View Article and Find Full Text PDFThe reasons for the selective vulnerability of distinct neuronal populations in neurodegenerative disorders are unknown. The cholinergic neurons of the basal forebrain are vulnerable to pathology and loss early in Alzheimer's disease and in a number of other neurodegenerative disorders of the elderly. In the primate, including man, these neurons are rich in the calcium buffer calbindin-D(28K).
View Article and Find Full Text PDFBackground: Previous studies found that rats subjected to carrageenan injection develop hyperalgesia, and despite complete recovery in several days, they continue to have an enhanced hyperalgesic response to a new noxious challenge for more than 28d. The study's aim was to identify candidate genes that have a role in the formation of the long-term hyperalgesia-related imprint in the spinal cord. This objective was undertaken with the understanding that the long-lasting imprint of acute pain in the central nervous system may contribute to the transition of acute pain to chronicity.
View Article and Find Full Text PDFBackground: Nitrous oxide is a commonly used anesthetic that inhibits the activity of methionine synthase, an enzyme involved in methylation reactions and DNA synthesis and repair. This inhibition triggers vacuole formation and degeneration of neurons in areas of the developing and mature brain that are important for spatial memory, raising the possibility that nitrous oxide might have sustained effects on learning.
Methods: To test this possibility, we randomized 18-month-old Fischer 344 rats (n = 13 per group) to 4 h of 70% nitrous oxide + 30% oxygen or 70% nitrogen + 30% oxygen (control) and assessed memory using a 12-arm radial maze for 14 days beginning 2 days after nitrous oxide inhalation.