Six-helix bundle (6HB) formation is an essential step for many viruses that rely on a class I fusion protein to enter a target cell and initiate replication. Because the binding modes of small molecule inhibitors of 6HB formation are largely unknown, precisely how they disrupt 6HB formation remains unclear, and structure-based design of improved inhibitors is thus seriously hampered. Here we present the high resolution crystal structure of TMC353121, a potent inhibitor of respiratory syncytial virus (RSV), bound at a hydrophobic pocket of the 6HB formed by amino acid residues from both HR1 and HR2 heptad-repeats.
View Article and Find Full Text PDFAn estimated one-third of the world population is latently infected with Mycobacterium tuberculosis. These nonreplicating, dormant bacilli are tolerant to conventional anti-tuberculosis drugs, such as isoniazid. We recently identified diarylquinoline R207910 (also called TMC207) as an inhibitor of ATP synthase with a remarkable activity against replicating mycobacteria.
View Article and Find Full Text PDFWe previously reported the discovery of substituted benzimidazole fusion inhibitors with nanomolar activity against respiratory syncytial virus (Andries, K.; et al. Antiviral Res.
View Article and Find Full Text PDFThe diarylquinoline R207910 (TMC207) is a promising candidate in clinical development for the treatment of tuberculosis. Though R207910-resistant mycobacteria bear mutations in ATP synthase, the compound's precise target is not known. Here we establish by genetic, biochemical and binding assays that the oligomeric subunit c (AtpE) of ATP synthase is the target of R207910.
View Article and Find Full Text PDF