It is generally accepted that transport through the nuclear pore complex (NPC) involves an abundance of phenylalanine-glycine rich protein domains (FG-domains) that serve as docking sites for soluble nuclear transport receptors (NTRs) and their cargo complexes. But the precise mechanism of translocation through the NPC allowing for high speed and selectivity is still vividly debated. To ultimately decipher the underlying gating mechanism it is indispensable to shed more light on the molecular arrangement of FG-domains and the distribution of NTR-binding sites within the central channel of the NPC.
View Article and Find Full Text PDFBackground: Sperm-derived mitochondria are integrated into the oocyte at fertilization but seem to vanish during the early cleavage phase. The developmental potential of pre-implantation embryos seems to be closely related to their ability to induce degeneration of these mitochondria, but the mechanisms underlying their loss of function are not yet understood. This study focuses on the fate of paternal mitochondria in pre-implantation embryos.
View Article and Find Full Text PDFTo explore whether super-resolution fluorescence microscopy is able to resolve topographic features of single cellular protein complexes, a two-photon 4Pi microscope was used to study the nuclear pore complex (NPC). The microscope had an axial resolution of 110-130 nm and a two-color localization accuracy of 5-10 nm. In immune-labeled HeLa cells, NPCs could be resolved much better by 4Pi than by confocal microscopy.
View Article and Find Full Text PDFJ Med Primatol
December 2006
Background: Because of its small size and unproblematic captivity behavior the marmoset monkey is an attractive New World primate model for early developmental questions. However, superovulation protocols used in Old World monkeys and women are not successful in the female marmoset. A novel protocol is needed to utilize these New World monkeys as an efficient animal model for in vitro fertilization experiments or embryo stem cell research.
View Article and Find Full Text PDFGrafting of immature testicular tissue provides a tool to examine testicular development and may offer a perspective for preservation of fertility in prepubertal patients. Successful xenografting in mice, resulting in mature spermatids, has been performed in several species but has failed with testicular tissues from the common marmoset, Callithrix jacchus. Previous data indicate that the hormonal milieu provided by the mouse host might cause this failure.
View Article and Find Full Text PDF