Publications by authors named "R Welty"

The recognition of the 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand, the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 (yU1) snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yU1 snRNA and the 5' ss RNA duplex.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the fifth leading cause of death among adults aged 65 and older, yet the onset and progression of the disease is poorly understood. What is known is that the presence of amyloid, particularly polymerized Aβ42, defines when people are on the AD continuum. Interestingly, as AD progresses, less Aβ42 is detectable in the plasma, a phenomenon thought to result from Aβ becoming more aggregated in the brain and less Aβ42 and Aβ40 being transported from the brain to the plasma via the CSF.

View Article and Find Full Text PDF

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG) repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption.

View Article and Find Full Text PDF

The recognition of 5' splice site (5' ss) is one of the earliest steps of pre-mRNA splicing. To better understand the mechanism and regulation of 5' ss recognition, we selectively humanized components of the yeast U1 snRNP to reveal the function of these components in 5' ss recognition and splicing. We targeted U1C and Luc7, two proteins that interact with and stabilize the yeast U1 (yU1) snRNA and the 5' ss RNA duplex.

View Article and Find Full Text PDF

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood.

View Article and Find Full Text PDF