Telomere-to-telomere (T2T) assemblies reveal new insights into the structure and function of the previously 'invisible' parts of the genome and allow comparative analyses of complete genomes across entire clades. We present here an open collaborative effort, termed the 'Ruminant T2T Consortium' (RT2T), that aims to generate complete diploid assemblies for numerous species of the Artiodactyla suborder Ruminantia to examine chromosomal evolution in the context of natural selection and domestication of species used as livestock.
View Article and Find Full Text PDFThe insertion of an endogenous retroviral long terminal repeat (LTR) sequence into the bovine apolipoprotein B (APOB) gene is causal to the inherited genetic defect cholesterol deficiency (CD) observed in neonatal and young calves. Affected calves suffer from developmental abnormalities, symptoms of incurable diarrhoea and often die within weeks to a few months after birth. Neither the detailed effects of the LTR insertion on APOB expression profile nor the specific mode of inheritance nor detailed phenotypic consequences of the mutation are undisputed.
View Article and Find Full Text PDFLong non-coding RNAs (lncRNAs) hold gene regulatory potential, but require substantial further functional annotation in livestock. Applying two metabogenomic approaches by combining transcriptomic and metabolomic analyses, we aimed to identify lncRNAs with potential regulatory function for divergent nutrient partitioning of lactating crossbred cows and to establish metabogenomic interaction networks comprising metabolites, genes and lncRNAs. Through correlation analysis of lncRNA expression with transcriptomic and metabolomic data, we unraveled lncRNAs that have a putative regulatory role in energy and lipid metabolism, the urea and tricarboxylic acid cycles, and gluconeogenesis.
View Article and Find Full Text PDFBovine mammary function at molecular level is often studied using mammary tissue or primary bovine mammary epithelial cells (pbMECs). However, bulk tissue and primary cells are heterogeneous with respect to cell populations, adding further transcriptional variation in addition to genetic background. Thus, understanding of the variation in gene expression profiles of cell populations and their effect on function are limited.
View Article and Find Full Text PDF