Chimeric antigen receptors (CARs) are synthetic fusion proteins that can reprogram immune cells to target specific antigens. CAR-expressing T cells have emerged as an effective treatment method for hematological cancers; despite this success, the mechanisms and structural properties that govern CAR responses are not fully understood. Here, we provide a simple assay to assess cellular avidity using a standard flow cytometer.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22.
View Article and Find Full Text PDFBi-specific T-cell engager antibodies (BiTEs) are synthetic fusion molecules that combine multiple antibody-binding domains to induce active contact between T-cells and antigen expressing cells in the body. Blinatumomab, a CD19-CD3 BiTE is now a widely used therapy for relapsed B-cell malignancies, and similar BiTE therapeutics have shown promise for treating various other forms of cancer. The current process for new BiTE development is time consuming and costly, requiring characterization of the individual antigen binding domains, followed by bi-specific design, protein production, purification, and eventually functional screening.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor T cell therapy (CAR-T) represents a promising and exciting new therapy for hematologic malignancies, where prognosis for relapsed/refractory patients remains poor. Encouraging results from clinical trials have often been tempered by heterogeneity in response to treatment among patients, as well as safety concerns including cytokine release syndrome. The identification of specific patient or treatment-specific factors underlying this heterogeneity may provide the key to the long-term sustainability of this complex and expensive therapy.
View Article and Find Full Text PDFEpidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs.
View Article and Find Full Text PDF