Publications by authors named "R Waltham"

With histopathology results typically taking several days, the ability to stage tumors during interventions could provide a step change in various cancer interventions. X-ray technology has advanced significantly in recent years with the introduction of phase-based imaging methods. These have been adapted for use in standard labs rather than specialized facilities such as synchrotrons, and approaches that enable fast 3D scans with conventional x-ray sources have been developed.

View Article and Find Full Text PDF

The assessment of margin involvement is a fundamental task in breast conserving surgery to prevent recurrences and reoperations. It is usually performed through histology, which makes the process time consuming and can prevent the complete volumetric analysis of large specimens. X-ray phase contrast tomography combines high resolution, sufficient penetration depth and high soft tissue contrast, and can therefore provide a potential solution to this problem.

View Article and Find Full Text PDF

Margins of wide local excisions in breast conserving surgery are tested through histology, which can delay results by days and lead to second operations. Detection of margin involvement intraoperatively would allow the removal of additional tissue during the same intervention. X-ray phase contrast imaging (XPCI) provides soft tissue sensitivity superior to conventional X-rays: we propose its use to detect margin involvement intraoperatively.

View Article and Find Full Text PDF

A significant number of patients receiving breast-conserving surgery (BCS) for invasive carcinoma and ductal carcinoma in situ (DCIS) may need reoperation following tumor-positive margins from final histopathology tests. All current intraoperative margin assessment modalities have specific limitations. As a first step towards the development of a compact system for intraoperative specimen imaging based on edge illumination x-ray phase contrast, we prove that the system's dimensions can be reduced without affecting imaging performance.

View Article and Find Full Text PDF