Publications by authors named "R Wallenberg"

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers.

View Article and Find Full Text PDF

A crucial aspect of adding an economical and environmental dimension to the upgrading of bio-oils is to develop catalysts with enhanced and prolonged activity. In the present study, the effect of doping δ-alumina (AlO) with oxides of cerium (Ce) and lanthanum (La) before thermal treatment was investigated. The performance of such an AlO-supported nickel-molybdenum (Ni-Mo) catalyst was evaluated by studying the selectivity for the direct hydrodeoxygenation (HDO) of vanillin to cresol under continuous-flow conditions.

View Article and Find Full Text PDF

BiO is a promising material for solid-oxide fuel cells (SOFC) due to the high ionic conductivity of some phases. The largest value is reached for its δ-phase, but it is normally stable at temperatures too high for SOFC operation, while nanostructured oxide is believed to have more suitable stabilization temperature. However, to manufacture such a material with a controlled chemical composition is a challenging task.

View Article and Find Full Text PDF

The recently identified novel Holliday junction-resolving enzyme, termed Hjc_15-6, activity investigation results imply DNA cleavage by Hjc_15-6 in a manner that potentially enhances the molecular self-assembly that may be exploited for creating DNA-networks and nanostructures. The study also demonstrates Pwo DNA polymerase acting in combination with Hjc_15-6 capability to produce large amounts of DNA that transforms into large DNA-network structures even without DNA template and primers. Furthermore, it is demonstrated that Hjc_15-6 prefers Holliday junction oligonucleotides as compared to Y-shaped oligonucleotides as well as efficiently cleaves typical branched products from isothermal DNA amplification of both linear and circular DNA templates amplified by phi29-like DNA polymerase.

View Article and Find Full Text PDF

The prediction, identification, and characterization of phases away from equilibrium conditions remain difficult challenges for material science. Herein, we demonstrate how systems whose phase diagrams contain deeply incising eutectics can offer opportunities to address these challenges. We report the synthesis of a new compound in the Au-Si system, a textbook example of a system with a deep eutectic.

View Article and Find Full Text PDF