Publications by authors named "R Walder"

Purpose: Management of pregnancy and delivery in women with lower urinary tract reconstruction is challenging and the currently available literature is insufficient to guide clinical practice. We report pregnancy and delivery outcomes in this specific population.

Materials And Methods: We conducted a national multicenter retrospective study (16 centers) including 68 women with 96 deliveries between 1998 and 2019.

View Article and Find Full Text PDF

The folding of RNA into a wide range of structures is essential for its diverse biological functions from enzymatic catalysis to ligand binding and gene regulation. The unfolding and refolding of individual RNA molecules can be probed by single-molecule force spectroscopy (SMFS), enabling detailed characterization of the conformational dynamics of the molecule as well as the free-energy landscape underlying folding. Historically, high-precision SMFS studies of RNA have been limited to custom-built optical traps.

View Article and Find Full Text PDF

Single-molecule force spectroscopy (SMFS) is a powerful technique to characterize the energy landscape of individual proteins, the mechanical properties of nucleic acids, and the strength of receptor-ligand interactions. Atomic force microscopy (AFM)-based SMFS benefits from ongoing progress in improving the precision and stability of cantilevers and the AFM itself. Underappreciated is that the accuracy of such AFM studies remains hindered by inadvertently stretching molecules at an angle while measuring only the vertical component of the force and extension, degrading both measurements.

View Article and Find Full Text PDF

Quantifying the energy landscape underlying protein-ligand interactions leads to an enhanced understanding of molecular recognition. A powerful yet accessible single-molecule technique is atomic force microscopy (AFM)-based force spectroscopy, which generally yields the zero-force dissociation rate constant (k ) and the distance to the transition state (Δx ). Here, we introduce an enhanced AFM assay and apply it to probe the computationally designed protein DIG10.

View Article and Find Full Text PDF

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein.

View Article and Find Full Text PDF