Gastrointestinal nematodes (GIN) constitute a problem in many sheep production systems, including those in Uruguay, causing reduced productivity and increased expenses. The main strategy to control GIN has consisted of the use of anthelmintics. However, GINs have developed resistance to anthelmintics, reducing their effectiveness.
View Article and Find Full Text PDFBone marrow stromal cells (BMSCs, also called bone-marrow-derived mesenchymal stromal cells) provide hematopoietic support and immunoregulation and contain a stem cell fraction capable of skeletogenic differentiation. We used immortalized human BMSC clonal lines for multi-level analysis of functional markers for BMSC subsets. All clones expressed typical BMSC cell-surface antigens; however, clones with trilineage differentiation capacity exhibited enhanced vascular interaction gene sets, whereas non-differentiating clones were uniquely CD317 positive with significantly enriched immunomodulatory transcriptional networks and high IL-7 production.
View Article and Find Full Text PDFJ Anim Breed Genet
April 2015
The aquaculture industry is one of the fastest growing animal food-producing sectors in the world, largely driven by an increasing demand for high-quality protein from developing countries. However, the majority of cultured production of aquatic species currently relies heavily on the collection of wild animals for use as broodstock. Aquatic animal domestication and genetic selection programmes in controlled environments are essential to enable the provision of a continued supply of high-quality food for an ever-expanding world population.
View Article and Find Full Text PDFBackground: Social interactions often occur among living organisms, including aquatic animals. There is empirical evidence showing that social interactions may genetically affect phenotypes of individuals and their group mates. In this context, the heritable effect of an individual on the phenotype of another individual is known as an Indirect Genetic Effect (IGE).
View Article and Find Full Text PDFReprod Domest Anim
August 2012
To satisfy increasing demands for fish as food, progress must occur towards greater aquaculture productivity whilst retaining the wild and farmed genetic resources that underpin global fish production. We review the main selection methods that have been developed for genetic improvement in aquaculture, and discuss their virtues and shortcomings. Examples of the application of mass, cohort, within family, and combined between-family and within-family selection are given.
View Article and Find Full Text PDF