Publications by authors named "R W Parkey"

Unlabelled: Tumor hypoxia is often associated with resistance to chemotherapy. Multidrug resistance type 1 (MDR1) protein is a member of the adenosine triphosphate binding cassette (ABC) proteins, some of which are involved in the multidrug resistance (MDR) phenotype in tumors. Many studies have focused on the role of these proteins in modulating drug resistance, but their effect on retention of imaging agents is less well studied.

View Article and Find Full Text PDF

A new approach to functional tumor imaging and deep interstitial penetration of therapeutic agents is to target the upregulated transport activities of neovascular endothelium. Agents are formulated with the anionic glycosaminoglycan, 435-type dermatan sulfate (DS 435, 22.2 kDa), chemically enriched for oligosaccharide sequences that confer high heparin cofactor II binding and correlate with high tumor uptake.

View Article and Find Full Text PDF

Coupled multicomponent biochemical reactive diffusion underlies a variety of biological signalling processes and pharmacokinetic applications, such as paracrine signalling involving "cocktails" comprised of growth promoter/inhibitor factors and proteases associated with tumor angiogenesis, invasion and metastasis, extravascular drug delivery, and polymeric controlled-release drug codelivery design. Here, we present a model and develop a new analytic solution to illustrate the spatiotemporal behavior associated with fully coupled binary biochemical reactive diffusion. The complete coupling renders the solution appreciably more complex in structure and behavior than solutions for unicomponent or partially coupled models.

View Article and Find Full Text PDF

Estrogens are important for normal bone growth and metabolism. The mechanisms are incompletely understood. Thus, we have undertaken characterization of the skeletal phenotype of aromatase (ArKO) deficient mice.

View Article and Find Full Text PDF

The widely applied single-interaction analytic expression characterizing the energy resolution component of the angular resolution precision for an electronically collimated point source is extended to include multiple-interaction Compton scatter sequences as well as sequences terminated by photoelectric absorption. The analytic formulation is developed using the statistical variance of the mean for components comprising composite, multivariate resolution precision estimators. It is demonstrated that enhanced resolution precision in the incident interaction scatter angle is attained when use is made of information from multiple interactions.

View Article and Find Full Text PDF