Publications by authors named "R W Hammerton"

Case History: Medical records from a single referral hospital (Davies Veterinary Specialists, Hitchin, UK) were reviewed to identify dogs (n = 8) with preputial cutaneous mast cell tumours (CMCT) that underwent surgical excision and primary preputial reconstruction, preserving the penis and urethra, after clients declined alternatives such as penile amputation and urethrostomy, from June 2017-June 2022.

Clinical Findings: Tumours had a median diameter of 21.5 (min 15, max 30) mm, were located cranioventrally (3/8), caudoventrally (1/8), laterally (2/8) and dorsally (2/8) relative to the prepuce and were diagnosed as CMCT based on cytology.

View Article and Find Full Text PDF

Objectives: To characterise common factors after a suspected increase in the incidence of post-procedure acute kidney injury in healthy dogs presenting for non-emergency surgical procedures.

Materials And Methods: Retrospective analysis of the medical records of 12 dogs that presented for acute kidney injury after general anaesthesia for non-emergency surgical procedures.

Results: The 12 non-geriatric dogs re-presented with acute kidney injury at a median of 4 days after surgery to four different veterinary centres, including three multidisciplinary referral practices in the UK.

View Article and Find Full Text PDF

Restriction of sodium, potassium adenosine triphosphatase (Na+,K(+)-ATPase) to either the apical or basal-lateral membrane domain of polarized epithelial cells is fundamental to vectorial ion and solute transport in many tissues and organs. A restricted membrane distribution of Na+,K(+)-ATPase in Madin-Darby canine kidney (MDCK) epithelial cells was found experimentally to be generated by preferential retention of active enzyme in the basal-lateral membrane domain and selective inactivation and loss from the apical membrane domain, rather than by vectorial targeting of newly synthesized protein from the Golgi complex to the basal-lateral membrane domain. These results show how different distributions of the same subunits of Na+,K(+)-ATPase may be generated in normal polarized epithelial and in disease states.

View Article and Find Full Text PDF

Vectorial function of polarized transporting epithelia requires the establishment and maintenance of a nonrandom distribution of Na,K-ATPase on the cell surface. In many epithelia, the Na,K-ATPase is located at the basal-lateral domain of the plasma membrane. The mechanisms involved in the spatial organization of the Na,K-ATPase in these cells are poorly understood.

View Article and Find Full Text PDF

The generation of cell surface polarity in transporting epithelial cells occurs in three distinct stages that involve cell-cell recognition and adhesion, cell surface remodelling to form biochemically and functionally distinct cell surface domains, and development of vectorial function. A widely used model system to study mechanisms involved in these stages is the Madin-Darby canine kidney (MDCK) cell line. Under appropriate growth conditions, MDCK cells develop in similar stages into polarized, multicellular epithelial structures.

View Article and Find Full Text PDF