Background: Patients are increasingly turning to the internet, and recently artificial intelligence engines (e.g., ChatGPT), for answers to common medical questions.
View Article and Find Full Text PDFUnlabelled: Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using pluripotent cell lines in biomedical applications and underscores the need to identify the causes of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common approach to maintain naïve pluripotency.
View Article and Find Full Text PDFThe directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation.
View Article and Find Full Text PDFInt J Environ Res Public Health
May 2024
The lifetime risk of silicosis associated with low-level occupational exposure to respirable crystalline silica remains unclear because most previous radiographic studies included workers with varying exposure concentrations and durations. This study assessed the prevalence of silicosis after lengthy exposure to respirable crystalline silica at levels ≤ 0.10 mg/m.
View Article and Find Full Text PDF