Publications by authors named "R Vitorasso"

Background: During protective mechanical ventilation, electrical impedance tomography (EIT) is used to monitor alveolar recruitment maneuvers as well as the distribution of regional ventilation. This technique can infer atelectasis and lung overdistention during mechanical ventilation in anesthetized patients or in the ICU. Changes in lung tissue stretching are evaluated by monitoring the electrical impedance of lung tissue with each respiratory cycle.

View Article and Find Full Text PDF

Signal disruptions in small animals during the realization of the Forced Oscillation Technique are a well-known cause of data loss as it leads to non-reliable estimations of the respiratory impedance. In this work, we assessed the effects of removing the disrupted epoch when a 3-seconds input signal composed of one and a half 2-seconds full cycle is used. We tested our hypothesis in 25 SAMR1 mice under different levels of bronchoconstriction due to methacholine administration by iv bolus injections in different doses (15 animals) and by iv continuous infusion in different infusion rates (10 animals).

View Article and Find Full Text PDF

Balb/c mice respiratory mechanics was studied in two intravenous methacholine (MCh) protocols: bolus and continuous infusion. The Constant Phase Model (CPM) was used in this study. The harmonic distortion index (k) was used to assess the respiratory system nonlinearity.

View Article and Find Full Text PDF

Assessment of respiratory mechanics extends from basic research and animal modeling to clinical applications in humans. However, to employ the applications in human models, it is desirable and sometimes mandatory to study non-human animals first. To acquire further precise and controlled signals and parameters, the animals studied must be further distant from their spontaneous ventilation.

View Article and Find Full Text PDF

Respiratory mechanics studies are associated with fundamental research and translational studies; the present work thus investigates this particular matter. Our current research describes differences and similarities between two different ways of administrating a very prevalent bronchoconstrictor (methacholine) in an aging process scenario. The core issue of our work is related with troubles we find with the bolus protocol and the application of the mathematical model used to assess the respiratory mechanics.

View Article and Find Full Text PDF