Publications by authors named "R Viskup"

The production of monoenergetic electron beams by two copropagating ultrashort laser pulses is investigated both by experiment and using particle-in-cell simulations. By proper timing between guiding and driver pulses, a high-amplitude plasma wave is generated and sustained for longer than is possible with either of the laser pulses individually, due to plasma waveguiding of the driver by the guiding pulse. The growth of the plasma wave is inferred by the measurement of monoenergetic electron beams with low divergence that are not measured by using either of the pulses individually.

View Article and Find Full Text PDF

The physics of the interaction of high-intensity laser pulses with underdense plasma depends not only on the interaction intensity but also on the laser pulse length. We show experimentally that as intensities are increased beyond 10(20) W cm(-2) the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and it is likely that direct laser acceleration mechanisms begin to play an important role. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high-power interactions at much lower intensity enable the generation of quasi-mono-energetic beams of relativistic electrons.

View Article and Find Full Text PDF

High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma.

View Article and Find Full Text PDF

Human platelet factor V has been isolated using either a monoclonal or polyclonal antibody directed against human plasma factor V. The largest peptide observed upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified human platelet factor V comigrates with purified human plasma factor V. However, a significant portion of the isolated protein is represented by peptides of lower apparent molecular weight (Mr).

View Article and Find Full Text PDF

That the macroporous anion-exchange resin AG MP-1 can be used with HPLC equipment and common aqueous buffers for the chromatography of proteins is shown. The utility of this system is illustrated by the partial purification and complete resolution of the three protein synthesis elongation factors from each other, starting with a crude extract of Escherichia coli. The factors were purified 10- to 30-fold in a yield of 50 to 90% with a single 60-min chromatographic program of increasing NaCl concentration.

View Article and Find Full Text PDF