Publications by authors named "R Vile"

T cell immune tolerance is established in part through the activity of the Auto-immune Regulator (AIRE) transcription factor in the medullary Thymic Epithelial Cells (mTEC) of the thymus. AIRE induces expression of SELF peripheral tissue-specific antigens for presentation to naïve T cells to promote activation/deletion of potentially autoreactive T cells. We show, for the first time to our knowledge, that tumors mimic the role of AIRE in mTEC to evade immune rejection.

View Article and Find Full Text PDF

Background: Long-lived, re-activatable immunity to SARS-CoV-2 and its emerging variants will rely on T cells recognizing conserved regions of viral proteins across strains. Heterologous prime-boost regimens can elicit elevated levels of circulating CD8+ T cells that provide a reservoir of first responders upon viral infection. Although most vaccines are currently delivered intramuscularly (IM), the initial site of infection is the nasal cavity.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells are a clinically approved therapy for blood cancers. To produce clinical-grade CAR T cells, a retroviral or lentiviral vector is used to deliver the CAR and associated genes to patient T cells. Apolipoprotein B editing enzyme, catalytic polypeptide 3 (APOBEC3) enzymes are known to be upregulated after transfection and retroviral infection and to deaminate cytidine to uracil in nucleic acids, resulting in cytidine-to-thymine mutations in DNA.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δ and oFV- vectors to test the efficiency and stability of viral/CD19 spread.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint inhibition (ICI) therapy is often effective against various tumors but faces resistance in immune suppressive microenvironments, particularly in hepatocellular carcinoma (HCC).
  • Research on an oncolytic virus (VSV-IFNß) indicates that it can hinder the effectiveness of anti-PD-L1 therapy by expanding antiviral T cells, which then outcompete and reduce anti-tumor T cell populations.
  • However, incorporating HCC tumor antigens into the virus can restore the effectiveness of combined oncolytic virotherapy and anti-PD-L1 treatment by promoting the activation of anti-tumor T cells.
View Article and Find Full Text PDF