Despite their broad application potential, the widespread use of β-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of β-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of β-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.
View Article and Find Full Text PDFThe design of a porous silicon (PSi) biosensor is not often documented, but is of the upmost importance to optimize its performance. In this work, the motivation behind the design choices of a PSi-based optical biosensor for the indirect detection of bacteria via their lysis is detailed. The transducer, based on a PSi membrane, was characterized and models were built to simulate the analyte diffusion, depending on the porous nanostructures, and to optimize the optical properties.
View Article and Find Full Text PDFIn this work, we developed a biosensor for the indirect detection of bacteria via their lysate. The developed sensor is based on porous silicon membranes, which are known for their many attractive optical and physical properties. Unlike traditional porous silicon biosensors, the selectivity of the bioassay presented in this work does not rely on bio-probes attached to the sensor surface; the selectivity is added to the analyte itself, by the addition of lytic enzymes that target only the desired bacteria.
View Article and Find Full Text PDFMicromachines (Basel)
December 2021
A robust fabrication method for stable mesoporous silicon membranes using standard microfabrication techniques is presented. The porous silicon membranes were passivated through the atomic layer deposition of different metal oxides, namely aluminium oxide AlO, hafnium oxide HfO and titanium oxide TiO. The fabricated membranes were characterized in terms of morphology, optical properties and chemical properties.
View Article and Find Full Text PDFThe substantial increase in DNA sequencing efforts has led to a rapid expansion of available sequences in glycoside hydrolase families. The ever-increasing sequence space presents considerable opportunities for the search for enzymes with novel functionalities. In this work, the sequence-function space of glycoside hydrolase family 94 (GH94) was explored in detail, using a combined approach of phylogenetic analysis and sequence similarity networks.
View Article and Find Full Text PDF