Preclinical rodent models are essential research tools for improving understanding of physiological aging processes in humans. However, the translatability of findings obtained leveraging rodent models to humans is limited, likely due in part to differences in macronutrient composition of the diets. Here, we investigated the impact of a 3-month diet intervention in old male C57BL/6JN mice in which the macronutrient composition was aligned with that of a midlife/older adult in the United States, compared to a traditional rodent diet, and assessed various phenotypes that are typically altered with aging.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2024
Endothelial function declines with aging and independently predicts future cardiovascular disease (CVD) events. Diving also impairs endothelial function in humans. Yet, dolphins, being long-lived mammals adapted to diving, undergo repetitive cycles of tissue hypoxia-reoxygenation and disturbed shear stress without manifesting any apparent detrimental effects, as CVD is essentially nonexistent in these animals.
View Article and Find Full Text PDFAging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology.
View Article and Find Full Text PDFCardiovascular diseases (CVDs) are the leading cause of death in the United States. However, disparities in CVD-related morbidity and mortality exist as marginalized racial and ethnic groups are generally at higher risk for CVDs (Black Americans, Indigenous People, South and Southeast Asians, Native Hawaiians, and Pacific Islanders) and/or development of traditional CVD risk factors (groups above plus Hispanics/Latinos) relative to non-Hispanic Whites (NHW). In this comprehensive review, we outline emerging evidence suggesting these groups experience accelerated arterial dysfunction, including vascular endothelial dysfunction and large elastic artery stiffening, a nontraditional CVD risk factor that may predict risk of CVDs in these groups with advancing age.
View Article and Find Full Text PDF