Publications by authors named "R Venkatadri"

Key Points: IL-33/ST2 alarmin pathway regulates inflammation, fibrosis, and resolution of ischemia-reperfusion injury of kidneys. ST2 regulates the transcriptome of T-regulatory cells related to suppressive and reparative functions. The secretome of ST2 T-regulatory cells regulates hypoxic injury in an amphiregulin-dependent manner.

View Article and Find Full Text PDF

The Three Prime Repair EXonuclease I (TREX1) is critical for degrading post-apoptosis DNA. Mice expressing catalytically inactive TREX1 (TREX1 D18N) develop lupus-like autoimmunity due to chronic sensing of undegraded TREX1 DNA substrates, production of the inflammatory cytokines, and the inappropriate activation of innate and adaptive immunity. This study aimed to investigate Thelper (Th) dysregulation in the TREX1 D18N model system as a potential mechanism for lupus-like autoimmunity.

View Article and Find Full Text PDF

Lupus glomerulonephritis (LN) is a complex autoimmune disease characterized by circulating autoantibodies, immune-complex deposition, immune dysregulation and defects in regulatory T cell (Tregs). Treatment options rely on general immunosuppressants and steroids that have serious side effects. Approaches to target immune cells, such as B cells in particular, has had limited success and new approaches are being investigated.

View Article and Find Full Text PDF

The advent of organoids has renewed researchers' interest in in vitro cell culture systems. A wide variety of protocols, primarily utilizing pluripotent stem cells, are under development to improve organoid generation to mimic organ development. The complexity of organoids generated is greatly influenced based on the method used.

View Article and Find Full Text PDF

Previously, we generated IL233, a hybrid cytokine composed of interleukin (IL)-2 and IL-33, with better therapeutic potential than either cytokine in multiple inflammatory diseases, in part through promoting T-regulatory cells (Tregs). Here we test the potential of IL233 pretreatment in a murine model of excessive Th1 activation, the parent-into-F1 model of acute GVHD (aGVHD). Five days of IL233 pretreatment of the recipients blocked or delayed the aGVHD-linked loss of B cells as seen in either the peripheral blood (day-11) or lymph nodes (day-14).

View Article and Find Full Text PDF