Purpose: The aims of this study were (i) to design a new high-dose-rate (HDR) brachytherapy applicator for treating surface lesions with planning target volumes larger than 3 cm in diameter and up to 5 cm in size, using the microSelectron-HDR or Flexitron afterloader (Elekta Brachytherapy) with a (192)Ir source; (ii) to calculate by means of the Monte Carlo (MC) method the dose distribution for the new applicator when it is placed against a water phantom; and (iii) to validate experimentally the dose distributions in water.
Methods: The penelope2008 MC code was used to optimize dwell positions and dwell times. Next, the dose distribution in a water phantom and the leakage dose distribution around the applicator were calculated.
Purpose: Dose optimization for stepping source brachytherapy can nowadays be performed using automated inverse algorithms. Although much quicker than graphical optimization, an experienced treatment planner is required for both methods. With automated inverse algorithms, the procedure to achieve the desired dose distribution is often based on trial-and-error.
View Article and Find Full Text PDFBackground: In pulsed-dose rate prostate brachytherapy the dose is delivered during 48 hours after implantation, making the treatment sensitive to oedematic effects possibly affecting dose delivery. The aim was to study changes in prostate volume during treatment by analysing catheter configurations on three subsequent scans.
Methods: Prostate expansion was determined for 19 patients from the change in spatial distribution of the implanted catheters, using three CT-scans: a planning CT (CT1) and two CTs after 24 and 48 hours (CT2, CT3).
Purpose: Graphical optimization (GrO) is a common method for high-dose-rate/pulsed-dose-rate (PDR) prostate brachytherapy treatment planning. New methods performing inverse optimization of the dose distribution have been developed over the past years. The purpose is to compare GrO and two established inverse methods, inverse planning simulated annealing (IPSA) and hybrid inverse treatment planning and optimization (HIPO), and one new method, enhanced geometric optimization-interactive inverse planning (EGO-IIP), in terms of speed and dose-volume histogram (DVH) parameters.
View Article and Find Full Text PDFBackground And Purpose: A substantial reduction of uncertainties in clinical brachytherapy should result in improved outcome in terms of increased local control and reduced side effects. Types of uncertainties have to be identified, grouped, and quantified.
Methods: A detailed literature review was performed to identify uncertainty components and their relative importance to the combined overall uncertainty.