Publications by authors named "R Vallon"

Biofilms constitute one of the most common forms of living matter, playing an increasingly important role in technology, health, and ecology. While it is well established that biofilm growth and morphology are highly dependent on the external flow environment, the precise role of fluid friction has remained elusive. We grew Bacillus subtilis biofilms on flat surfaces of a channel in a laminar flow at wall shear stresses spanning one order of magnitude (τ = 0.

View Article and Find Full Text PDF

In wine tasting, tasters commonly swirl their glasses before inhaling the headspace above the wine. However, the consequences of wine swirling on the chemical gaseous headspace inhaled by tasters are barely known. In champagne or sparkling wine tasting, starting from the pouring step, gas-phase carbon dioxide (CO2) is the main gaseous species that progressively invades the glass headspace.

View Article and Find Full Text PDF

The chemical space perceived by a consumer of champagne or other sparkling wines is progressively modified all along tasting. Real-time monitoring of gas-phase CO concentration was performed, through a CO-diode laser sensor, along a two-dimensional array of nine points in the headspace of three types of glasses poured with champagne. Two original glasses with distinct headspace volumes were compared with the standard INAO tasting glass.

View Article and Find Full Text PDF

Spectroscopic techniques based on Distributed FeedBack (DFB) Quantum Cascade Lasers (QCL) provide good results for gas detection in the mid-infrared region in terms of sensibility and selectivity. The main limitation is the QCL relatively low tuning range (~10 cm) that prevents from monitoring complex species with broad absorption spectra in the infrared region or performing multi-gas sensing. To obtain a wider tuning range, the first solution presented in this paper consists of the use of a DFB QCL array.

View Article and Find Full Text PDF

A new luminescent Tb-DOTAGA (1,4,7,10-tetraazacyclododecane-1-glutaric-4,7,10- triacetic acid) complex (TbL) was synthesized and covalently immobilized on a silicon wafer. The grafting process was monitored by means of IR and XPS spectroscopies and the optical properties of the functionalized silicon wafer (TbL@Si) were investigated by fluorescence experiments. A homemade setup was then implemented in order to follow TbL@Si optical properties in the presence of gaseous nitric oxide (NO).

View Article and Find Full Text PDF