The ability to uniquely identify a compound requires highly precise and orthogonal measurements. Here we describe a newly developed analytical platform that integrates high resolution ion mobility and cryogenic vibrational ion spectroscopy for high-precision structural characterizations. This platform allows for the temporal separation of isomeric/isobaric ions and provides a highly sensitive description of the ion's adopted geometry in the gas phase.
View Article and Find Full Text PDFIon mobility separations, especially using drift tube ion mobility spectrometers, are usually performed in linear channels, which can have a large footprint when extended to achieve higher resolving powers. In this work, we explored the performance of an ion mobility device with a curved architecture, which can have a more compact form. The cocentric ion mobility spectrometer (CoCIMS) manipulates ions between two cocentric surfaces containing a serpentine track.
View Article and Find Full Text PDFIon mobility-mass spectrometry (IMS-MS) is used to analyze complex samples and provide structural information on unknown compounds. As the complexity of samples increases, there is a need to improve the resolution of IMS-MS instruments to increase the rate of molecular identification. This work evaluated a cyclable and variable path length (and hence resolving power) multilevel Structures for Lossless Ion Manipulations (SLIM) platform to achieve a higher resolving power than what was previously possible.
View Article and Find Full Text PDFHigh-resolution ion mobility spectrometry-mass spectrometry (HR-IMS-MS) instruments have enormously advanced the ability to characterize complex biological mixtures. Unfortunately, HR-IMS and HR-MS measurements are typically performed independently due to mismatches in analysis time scales. Here, we overcome this limitation by using a dual-gated ion injection approach to couple an 11 m path length structures for lossless ion manipulations (SLIM) module to a Q-Exactive Plus Orbitrap MS platform.
View Article and Find Full Text PDFEnhancing the sensitivity of low-abundance ions in a complex mixture without sacrificing measurement throughput is highly desirable. This work demonstrates a way to greatly improve the sensitivity of ion mobility (IM)-selected ions by accumulating them in an array of high-capacity ion traps located inside a novel structures for lossless ion manipulations ion mobility spectrometer (SLIM-IMS) module. The array of ion traps used in this work consisted of seven independently controllable traps.
View Article and Find Full Text PDF