Hafnia-based nanostructures and other high-k dielectrics are promising wide-gap materials for developing new opto- and nanoelectronic devices. They possess a unique combination of physical and chemical properties, such as insensitivity to electrical and optical degradation, radiation damage stability, a high specific surface area, and an increased concentration of the appropriate active electron-hole centers. The present paper aims to investigate the structural, optical, and luminescent properties of anodized non-stoichiometric HfO nanotubes.
View Article and Find Full Text PDFThe prospects of the development of non-volatile memory elements that involve memristive metal-dielectric-metal sandwich structures are due to the possibility of reliably implementing sustained functional states with quantized conductance. In the present paper, we have explored the properties of Zr/ZrO/Au memristors fabricated based on an anodic zirconia layer that consists of an ordered array of vertically oriented non-stoichiometric nanotubes with an outer diameter of 30 nm. The operational stability of the designed memory devices has been analyzed in unipolar and bipolar resistive switching modes.
View Article and Find Full Text PDFBackground: Survival of patients with multiple myeloma (MM) has improved significantly with access to autologous stem cell transplant (SCT) and new treatments. This study aims to describe epidemiology, treatment patterns, and outcomes of MM in Israel.
Methods: A retrospective observational study was conducted in Maccabi Healthcare Services, a 2-million-member nationwide health plan in Israel.
The catalytic activity of nanotubular titanium dioxide films formed during the oxidation of acetone to carbon dioxide under the action of visible light with a wavelength of 450 nm was found to be approximately 2 times higher compared to standard titanium dioxide (Degussa P25). The nanotubular films were grown by the anodization of titanium foil using an original technique. Diffuse reflectance spectra of the films are attributed to enhanced activity in the visible spectrum by the nonstoichiometry of titanium dioxide near the interface between the nanotubular film and the titanium foil substrate.
View Article and Find Full Text PDFMethods for obtaining osteoblast cultures from the calvaria of adult Wistar rats and 12-day-old embryos of these rats have been adapted for studying the biocompatibility and ossointegration of titanium-based implants. The osteoblast morphology and their differentiation into osteocytes on a titanium matrix with specially treated surface have been studied. It has been confirmed that two cultures of diploid rat cells obtained in the study can serve as efficient models for preclinical in vitro testing of nanostructured titanium implants for biocompatibility and osseointegration.
View Article and Find Full Text PDF