In this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out.
View Article and Find Full Text PDFA focused ion beam (FIB) technique was applied to cross-sectional specimen preparation to observe an interface between a plasma sprayed coating and an aluminum (Al) substrate by transmission electron microscopy (TEM). The surface of the sprayed coating film has a roughness of several tens of microns. Sputter rates for the coating film and the substrate are greatly different.
View Article and Find Full Text PDF: A new method for transmission electron microscope (TEM) specimen preparation using a focused ion beam (FIB) system that results in a lower rate of gallium (Ga) implantation has been developed. The method was applied to structural and analytical studies of composite materials such as silicon (Si)-devices and magneto-optical disk. To protect the specimens against Ga ion irradiation, amorphous tungsten (W) was deposited on the surface of the specimen prior to FIB milling.
View Article and Find Full Text PDF