This study presents an approach developed to derive a Delayed-Multivariate Exposure-Response Model (D-MERF) useful to assess the short-term influence of temperature on mortality, accounting also for the effect of air pollution (O and PM). By using Distributed, lag non-linear models (DLNM) we explain how city-specific exposure-response functions are derived for the municipality of Rome, which is taken as an example. The steps illustrated can be replicated to other cities while the statistical model presented here can be further extended to other exposure variables.
View Article and Find Full Text PDFHeat and cold temperatures associated with exposure to poor air quality lead to increased mortality. Using a generalized linear model with Poisson regression for overdispersion, this study quantifies the natural-caused mortality burden attributable to heat/cold temperatures and PM and O air pollutants in Rome and Milan, the two most populated Italian cities. We calculate local-specific mortality relative risks (RRs) for the period 2004-2015 considering the overall population and the most vulnerable age category (≥85 years).
View Article and Find Full Text PDFThe impact of municipal solid waste incineration (MSWI) on the environment and on human health was assessed by a life cycle assessment (LCA) approach. Even if risk assessment and epidemiologic analyses are specifically indicated for the investigation of the health outcomes, they resulted costly, time intensive and generally focused only on the effects caused by pollutant compounds directly emitted by the facility. Differently, LCA approaches are less time and cost intensive and able to account also for other indirect and direct emission of MSWI.
View Article and Find Full Text PDFAn assessment of potential carcinogenic and toxic health outcomes related to atmospheric emissions from the new-generation coal fired power plant of Torrevaldaliga Nord, in Central Italy, has been conducted. A chemical-transport model was applied on the reference year 2010 in the area of the plant, in order to calculate airborne concentrations of a set of 17 emitted pollutants of health concern. Inhalation cancer risks and hazard quotients, for each pollutant and for each target organ impacted via the inhalation pathway, were calculated and mapped on the study domain for the overall ambient concentrations and for the sole contribution of the plant to airborne concentrations, allowing to assess the relative contribution of the power plant to the risk from all sources.
View Article and Find Full Text PDFBackground: In 2014, the European Environment Agency estimated 59 630 premature deaths in Italy attributable to long-term exposure to PM2.5, 17 290 to NO2 and 2900 to O3. The aim of this study was to test an approach for assessing health impact of the above pollutants analyzing possible associations between annual municipal concentrations, estimated by the national dispersion model developed by ENEA, and mortality rates for trachea, bronchus and lung (TBL) cancer, total respiratory diseases (RD) and chronic obstructive pulmonary diseases (COPD).
View Article and Find Full Text PDF